摘要:漏钢现象是连铸过程主要操作故障之一,影响连铸生产效率及其设备寿命,漏钢预报一直是连铸研究领域的热门研究课题。本文针对当前连铸漏钢预报系统误报率高和预报准确率低的问题,提出了一种基于K-means算法连铸漏钢预报方法。分析了漏钢预报系统的架构及其连接方式;采用K-means算法对热电偶采取的结晶器坯壳温度数据进行降噪和聚类处理;对某钢厂板坯220 mm×1600 mm连铸机浇铸过程采集到的数据进行测试,测试结果表明,利用K-means算法对正常浇铸数据、温度上升数据和漏钢时刻数据可以正确区分,从而证明了提出连铸漏钢预报方法的有效性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社