首页 > 期刊 > 重庆邮电大学学报·自然科学版 > 利用卷积神经网络的显著性区域预测方法 【正文】

利用卷积神经网络的显著性区域预测方法

作者:李荣 无锡太湖学院物联网工程学院; 江苏无锡214064; 无锡太湖学院江苏省物联网应用技术重点实验室; 江苏无锡214064

摘要:针对神经网络的显著性区域预测存在数据采集代价大、处理繁琐等问题,提出2种卷积神经网络,即从头开始训练的浅层卷积神经网络,以及前三层源自另一个网络的深层卷积神经网络。其中,浅层网络结构简单,可避免过拟合问题;深层网络可以充分利用最底层的模型参数,收敛更快,效果更好。所提卷积神经网络应用于回归问题,均没有直接训练特征图的线性模型,而是在迁移层上训练了一堆新的卷积层。从端到端的角度解决显著性预测,将学习过程演化为损失函数的最小化问题。测试和训练在SALICON,SUN和MIT300数据集上进行,实验结果验证了所提方法的有效性。其中,深层网络和浅层网络在SALICON和SUN数据上的结果相似,深层网络在MIT300上的结果更优,与其他方法相比,所提方法具有不错的表现,而且具有跨数据集的鲁棒性。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。

重庆邮电大学学报·自然科学版杂志

重庆邮电大学学报·自然科学版杂志, 双月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:人工智能与信息通信、通信与电子、计算机与自动化等。于1988年经新闻总署批准的正规刊物。

  • 北大期刊
  • CSCD期刊
  • 统计源期刊
  • 1-3个月审核

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅