摘要:通用的目标识别与定位卷积神经网络算法难以兼顾精度和速度的要求。本文在YOLOv2卷积神经网络的基础上,采用多尺度训练、网络预训练和k-means维度聚类等优化方法,提出了机械零件实时识别与定位的改进卷积神经网络算法。本文以螺母和垫片2种物体为识别与定位的对象,以工业传送带为场景,同时考虑到了传送带上干扰物的存在,对改进算法的准确率和速度进行了实验测试。实验结果证明本文的算法相对其它常用目标检测卷积神经网络算法在识别准确率和速度上达到了很好的平衡,为零件实时分拣提供了基础。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社