摘要:目的提出一种基于人类视觉注意力机制的FA-Net网络结构以使卷积神经网络(CNN)更适用于眼病筛查系统中的图像质量评估。方法FA-Net主网络由VGG-19网络组成,本研究在该基础上将人类视觉注意力机制加入到CNN中,并在训练时使用迁移学习的方法,使用ImageNet的权重初始化网络。注意力网络采用前景提取的方法,提取血管和疑似病灶点等感兴趣区域,并赋予感兴趣区域更高的权重来加强对感兴趣区域的学习。结果在训练FA-Net时,使用了2894张眼底图像。FA-Net在包含2170张眼底图像的测试集上,分类准确率达97.65%,其敏感度和特异性分别为0.978和0.960,曲线下面积(AUC)为0.995。结论FA-Net对比于其他CNN具有更优越的分类性能,能够更准确、高效地评估视网膜眼底图像质量。该网络考虑了人类视觉系统(HVS)和人类注意力机制,通过在VGG-19网络结构中加入注意力模块,在获得更好分类性能的同时也使分类结果更具有可解释性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社