摘要:局部路径规划层作为无人驾驶汽车软件层的重要组成分布,如何有效、安全地到达目的地是当前研究的热点。针对结构化道路信息,充分考虑车道线的约束,在使用Frenet坐标系理论的基础上,提出一种考虑到车道线曲率和障碍物模型信息,得到不同车道上其他道路参与者的位置信息,以便计算其他障碍物模型对本车危险程度,综合算法实时性、轨迹平顺性等要素的最小代价局部路径规划算法。在局部路径规划过程中,沿着参考线(Frenet坐标系下X轴上一段路径)选取多个路径分割点,Frenet坐标系下在每个分割点处沿Y轴进行控制点离散,每个路径分割点处选取1个控制点构成路径控制点集合,使用一元三次方程对每种排列组合路径进行拟合,从而使用代价函数对每种排列组合路径进行评估,代价函数值最小为最优的局部路径。代价函数考虑拟合轨迹到障碍物的危险程度、轨迹平顺性、轨迹到当前参考线(实时在全局路径规划层上根据车速得到一条当前需要跟踪的理想轨迹)的偏离程度、拟合轨迹行驶方向的改变程度、无人驾驶汽车最小转弯半径。研究结果表明:在不同试验场景下,所提出基于代价函数的局部路径规划算法,能规划出一条不与障碍物发生碰撞的最优路径,并能保证无人驾驶汽车行驶轨迹平顺性和路径规划层实时性的要求。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社