摘要:为全面评估预测震害损失,提出一种概率密度预测方法。首先,通过改进的生命年损失计算法,获取生命年损失值;其次,采用基于Akaike信息量准则(AIC)的逐步回归分析法,辨识生命年损失的强关联因素,在此基础上构建神经网络分位数回归(QRNN)模型;然后,得到生命年损失预测值与强相关因素的非线性关系,输出不同分位点下生命年损失预测值,运用高斯核函数预测生命年损失概率密度;最后,选取我国1996-2014年的189条地震灾害损失数据作为训练样本,预测2015年10例地震的生命年损失,并与B样条分位数回归(QRBS)模型及3种线性模型作对比。研究表明:基于QRNN模型的震害损失评估概率密度预测,降低了数据依赖性,提高了评估效率;预测值平均绝对误差不超过7. 5%,便于震害评估。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社