欢迎来到优发表网

400-888-1571 购物车(0)

首页 > 期刊 > 自动化学报 > 基于迁移学习的类别级物体识别与检测研究与进展 【正文】

基于迁移学习的类别级物体识别与检测研究与进展

作者:张雪松; 庄严; 闫飞; 王伟 大连理工大学控制科学与工程学院; 大连116024; 大连交通大学软件学院; 大连116028

摘要:类别级物体识别与检测属于计算机视觉领域的一个基础性问题,主要研究在图像或视频流中识别和定位出其中感兴趣的物体.在基于小规模数据集的类别级物体识别与检测应用中,模型过拟合、类不平衡和跨领域时特征分布变化等关键问题与挑战交织在一起.本文介绍了迁移学习理论的研究现状,对迁移学习理论解决基于小规模数据集的物体识别与检测中遇到的主要问题的研究思路和前沿技术进行了着重论述和分析.最后对该领域的研究重点和技术发展趋势进行了探讨.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。

自动化学报杂志

自动化学报杂志, 月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:综述、长论文、论文与报告、短文等。于1963年经新闻总署批准的正规刊物。

  • 北大期刊
  • CSCD期刊
  • 统计源期刊
  • 1-3个月审核

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 投稿咨询 润稿咨询