摘要:针对旋转机械非线性特征提取的问题,提出了广义分形维数(generalized fractal dimension,简称GFD)和核函数主元分析(kernel principal component analysis,简称KPCA)的旋转机械振动特征提取方法。首先,通过广义分形维数进行初次特征提取,形成高维特征空间;其次,通过核主元分析方法对高维特征空间降维并进行第二次特征提取;最后,利用核主元分析方法和KN近邻(KNN)方法对转子和轴承不同状态下的特征进行了分类。研究表明,GFD-KPCA方法对旋转机械进行了有效的特征提取,对不同状态的数据有高精度的分类,对参数选取有较低的依赖性。轴承微弱振动特征提取结果显示,GFD-KPCA性能优于常规的KPCA特征提取算法,具有更好的精度和适用范围。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
振动测试与诊断杂志, 双月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:专家论坛、论文、广告·信息等。于1980年经新闻总署批准的正规刊物。