摘要:近年来,深度学习作为计算机视觉的研究热点,在诸多方面得以发展与应用。特征提取是理解和分析高分遥感影像的关键基础。为促进高分遥感影像特征提取技术的发展,总结了深度学习模型在高分遥感影像特征提取技术的研究与发展,如:AlexNet,VGG-网和GoogleNet等卷积网络模型在深度语义特征提取中的应用。此外,重点分析和讨论了以卷积神经网络模型为基础的各类深度学习模型在高分遥感影像特征提取方面的应用与创新,如:迁移学习的应用;卷积神经网络(Convolutional Neural Network,CNN)模型结构的改变;CNN模型与其他模型结构的结合等方式,均提升了深度语义特征提取能力。最后,对卷积神经网络模型在高分遥感影像深度语义特征提取方面存在的问题以及后续可能的研究趋势进行了分析。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
遥感技术与应用杂志, 双月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:湿地遥感专栏、数据与图像处理、遥感应用、地理信息与遥感大数据等。于1986年经新闻总署批准的正规刊物。