Trans-NER:一种迁移学习支持下的中文命名实体识别模型

作者:王银瑞; 彭敦陆; 陈章; 刘丛 上海理工大学光电信息与计算机工程学院; 上海200093

摘要:目前存在的中文命名实体识别方法依赖于大量标注数据,但是某些领域标注数据的获取成本十分高昂.通过引入迁移学习技术,降低了实体识别模型对于大量标注数据的需求.论文从大规模非结构化文本数据出发,利用双向循环神经网络构建语言预测模型,将其作为迁移学习源模型;同时,基于上下文特征的字符级向量生成算法迁移源模型知识至实体识别模型,最终构建出迁移学习模型:Trans-NER.实验结果显示,提出的模型表现优于其他实体识别模型.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

小型微型计算机系统

北大期刊 下单

国际刊号:1000-1220

国内刊号:21-1106/TP

杂志详情

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。