摘要:传统粒子滤波算法样本数保持不变,而固定的样本数将会直接影响粒子滤波算法的计算复杂度,进而影响粒子滤波算法的实时性和精度.针对这一问题,引入样本数可自适应调整的粒子滤波,既可以在每一步状态方差估计中设定样本数的下限,也考虑了状态方差过大或者过小的情形;同时将动量BP算法与样本数自适应粒子滤波结合,增大位于低概率密度区域粒子的权值,使位于这部分区域的小权值粒子重新进入高权值区域,降低粒子退化,同时部分高权值的粒子分裂为小权值粒子.仿真模型选取为单变量非静态增长模型和多维单目标跟踪模型,仿真结果得出:使用融合动量BP算法的样本数自适应粒子滤波优于标准粒子滤波算法、基于BP神经网络的粒子滤波算法,在系统状态、均方根误差、估计与真值的关系、有效粒子数等方面体现出较好的预测能力,预测结果表现为精度较高,稳定性较好,且降低了计算的复杂度.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社