基于流量异常分析多维优化的入侵检测方法

作者:刘新倩; 单纯; 任家东; 王倩; 郭嘉伟 燕山大学信息科学与工程学院秦; 皇岛066001北京理工大学; 北京100081河北省软件工程重点实验室; 秦皇岛066001北京市软件安全工程技术重点实验室; 北京100081

摘要:入侵检测系统在检测和预防各种网络异常行为的过程中,海量和高维的流量数据使其面临着低准确率和高误报率的问题。本文提出一种基于流量异常分析多维优化的入侵检测方法,该方法在入侵检测数据的横向维度和纵向维度两个维度进行优化。在横向维度优化中,对数量较多的类别进行数据抽样,并采用遗传算法得到每个类别的最佳抽样比例参数,完成数据的均衡化。在纵向维度优化中,结合特征与类别的相关分析,采用递归特征添加算法选择特征,并提出平均召回率指标评估特征选择效果,实现训练集的低维高效性。基于优化的入侵检测数据,进一步通过训练数据集得到随机森林分类器,在真实数据集UNSW_NB15评估和验证本文提出的算法。与其他算法相比,本文算法具有高准确率和低误报率,并在攻击类型上取得了有效的召回率。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

信息安全学报

CSCD期刊 下单

国际刊号:2096-1146

国内刊号:10-1380/TN

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。