摘要:入侵检测系统在检测和预防各种网络异常行为的过程中,海量和高维的流量数据使其面临着低准确率和高误报率的问题。本文提出一种基于流量异常分析多维优化的入侵检测方法,该方法在入侵检测数据的横向维度和纵向维度两个维度进行优化。在横向维度优化中,对数量较多的类别进行数据抽样,并采用遗传算法得到每个类别的最佳抽样比例参数,完成数据的均衡化。在纵向维度优化中,结合特征与类别的相关分析,采用递归特征添加算法选择特征,并提出平均召回率指标评估特征选择效果,实现训练集的低维高效性。基于优化的入侵检测数据,进一步通过训练数据集得到随机森林分类器,在真实数据集UNSW_NB15评估和验证本文提出的算法。与其他算法相比,本文算法具有高准确率和低误报率,并在攻击类型上取得了有效的召回率。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社