摘要:针对传统交通流多步预测精度低的问题,提出了一种交通流周期预测模型。该模型结合交通流的周期性特征重构时间序列,并引入主成分分析降维思想,利用回声状态网络模型进行交通流时间序列预测,同时采用自适应扰动粒子群算法优化模型中的重要参数。将该模型应用到实际交通流时间序列中进行有效性验证,其预测结果的平均绝对百分比误差为9.8%,比传统回声状态网络多步预测模型降低了12.7%。实验结果表明,该模型可有效地避免预测结果延迟问题并大幅提高多步预测的精度。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社