[ 登录/注册 ] 购物车(0)
期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文
摘要:针对传统的RNN算法存在梯度消失的缺陷,在面对海量新闻数据,规模大且分类属性多的情况下存在效率低的问题,该文应用了传统的RNN模型改进后的LSTM神经网络算法,加入了预训练的word2vec模型。首先对新闻数据进行去除停用词及标点、格式转化、分词等预处理;其次进行特征提取、分类模型构造;最后进行了分类模型训练与测试。测试数据表明,在大数据量的情况下,使用LSTM算法具有较高的模型准确度和良好的扩展性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
省级期刊 下单
国际刊号:1673-8535
国内刊号:45-1352/Z
国际刊号:2096-7586
国内刊号:42-1907/C
国际刊号:1672-528X
国内刊号:50-1163/TP
多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。
推荐期刊保障正刊,评职认可,企业资质合规可查。
诚信服务,签订协议,严格保密用户信息,提供正规票据。
如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。