首页 > 期刊 > 无线电通信技术 > 基于GA-ELM模型的锂电池SOH预测 【正文】

基于GA-ELM模型的锂电池SOH预测

作者:刘凯文; 刘聪聪; 李珺凯; 王桂丽; 张持健 安徽师范大学物理与电子信息学院; 安徽芜湖241000

摘要:针对锂电池健康状态(State of Healthy,SOH)预测精度低的特点,利用遗传算法改进的极限学习机(Extreme Learning Machine,ELM)算法可提高锂电池SOH的预测精度。ELM输入层到隐含层的权值及隐含层单元的阈值随机产生,ELM算法只需设置隐含层单元的数目及隐含层激活函数类型。相比传统BP算法,ELM算法具有学习速率快、泛化性能好等优点。但由于ELM网络输入层到隐含层的权值和隐含层阈值产生的随机性,ELM算法的稳定性较差。ELM算法中引入遗传算法(GA)优化输入层到隐含层的权值和隐含层单元的阈值,该方法可增强ELM算法的稳定性。实验对比了GA-ELM算法与ELM算法、BP算法、RBF算法及SVR算法对锂电池SOH的预测,结果显示GA-ELM算法相比其他算法在预测精度和算法稳定性上均有提升。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。

无线电通信技术杂志

无线电通信技术杂志, 双月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:专家论坛、通信系统与网络技术、信息传输与接入技术、天线与伺服技术、综合电子信息技术等。于1972年经新闻总署批准的正规刊物。

  • 北大期刊
  • 1个月内审核

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅