摘要:完整地确定了换位子群是不可分Abel群的有限秩可除幂零群的结构,证明了下面的定理.设G是有限秩的可除幂零群,则G的换位子群是不可分Abel群当且仅当G'=Q或Qp/Z且G可以分解为G=S×D,其中当G'=Q时,当G'=Qp/Z时,S有中心积分解S=S1*S2*…*Sr,并且可以将S形式化地写成 其中,式中s,t都是非负整数,Q是有理数加群,πκ(k=1,2,…,t)是某些素数的集合,满足π1Cπ2…πt,Qπk={m/n|(m,n)=1,m∈Z,n为正的πk-数}.进一步地,当G'=Q时,(r;s;π1,π2,…,πt)是群G的同构不变量;当G'=Qp/Z时,(p,r;s;π1,π2,…,πt)是群G的同构不变量.即若群H也是有限秩的可除幂零群,它的换位子群是不可分Abel群,那么G同构于H的充分必要条件是它们有相同的不变量.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
数学年刊A辑杂志, 季刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:几何、拓扑、代数、数论、偏微分方程、常微分方程、控制论、泛函分析、函数论、计算数学、概率统计、运筹学、数理逻辑等。于1980年经新闻总署批准的正规刊物。