[ 登录/注册 ] 购物车(0)
期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文
摘要:提出了一种基于总体平均经验模态分解和极限学习机的故障诊断方法,该方法利用EEMD将单向阀振动信号分解成若干个不同尺度的本征模函数(IMF),从IMF分量中提取近似熵、能量熵、峭度和均方根4个特征构成特征向量集,用于建立基于极限学习机算法的故障诊断模型。实验结果表明,该方法可以监测高压隔膜泵运行状态,成功诊断出单向阀运行时产生的故障。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
省级期刊 下单
国际刊号:2096-3998
国内刊号:61-1510/N
国际刊号:2096-7586
国内刊号:42-1907/C
国际刊号:2096-6733
国内刊号:31-2160/K1
多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。
推荐期刊保障正刊,评职认可,企业资质合规可查。
诚信服务,签订协议,严格保密用户信息,提供正规票据。
如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。