首页 > 期刊 > 生物医学工程学 > 基于深度残差卷积神经网络的心电信号心律不齐识别 【正文】

基于深度残差卷积神经网络的心电信号心律不齐识别

作者:李端; 张洪欣; 刘知青; 黄菊香; 王田 北京邮电大学电子工程学院; 北京100876; 郑州轻工业大学计算机与通信工程学院; 郑州450002; 北京市安全生产智能监控重点实验室; 北京100876; 智慧康源(厦门)科技有限公司; 福建厦门361010; 北京航空航天大学自动化科学与电气工程学院; 北京100191

摘要:心电图(ECG)信号在采集过程中容易受内部和外部噪声干扰,而且不同患者的ECG信号形态特征差异较大,即使同一患者在不同时间和环境下其ECG信号也会有差异,因此ECG信号特征检测与识别在心脏病远程实时监测与智能诊断中具有一定难度。基于此,本研究提出将小波自适应阈值去噪和深度残差卷积神经网络算法用于多种心律不齐的信号识别过程中。其中,使用小波自适应阈值技术完成ECG信号滤波,并设计了包含多个残差块(residual block)结构的20层卷积神经网络(CNN),即深度残差卷积神经网络(DR-CNN),对5大类心律不齐ECG信号进行了识别。然后,本文采用残差块局部神经网络结构单元构建DR-CNN,缓解了深层网络的收敛难、调优难等问题,克服了CNN随着网络层数增加而导致的退化问题;进一步引入批标准化(batch normalization)技术,保证了网络的平滑收敛。按照美国医疗器械促进协会(AAMI)的心搏分类标准,使用麻省理工学院和波士顿贝丝以色列医院(MIT-BIH)心律不齐数据库中94 091个ECG心搏信号(2个导联),完成了心律不齐多分类、室性异位搏动(Veb)和室上性异位搏动(Sveb)等分类识别实验。实验结果表明,本文所提出的方法在ECG信号多分类、Veb和Sveb识别中的准确率分别达到了99.0349%、99.4980%和99.3347%。在相同的数据集和实验平台下,DR-CNN在分类准确率、特异性和灵敏度上均优于相同结构复杂度的CNN、深度多层感知机等传统算法。DR-CNN算法提高了心律不齐智能诊断的精度,该方法与可穿戴设备、物联网和无线通信技术相结合,可以将心脏病的预防、监测和诊断延伸到家庭、养老院等院外场景,从而提高心脏病患者的救治率,并且有效地节约医疗资源。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。

生物医学工程学杂志

生物医学工程学杂志, 双月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:论著、新技术与新方法、综述等。于1984年经新闻总署批准的正规刊物。

  • 北大期刊
  • 统计源期刊
  • 1-3个月审核

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅