基于分层抽样的不均衡数据集成分类

作者:王馨月; 景丽萍 北京交通大学计算机与信息技术学院; 北京100044

摘要:不均衡数据分类是数据挖掘领域的一个难点问题,对多数类样本进行降采样可简单且有效地解决不均衡数据处理面临的两大核心问题,即如何从数类占绝对优势的数据集合中最大程度地挖掘少数类信息;如何确保在不过度损失多数类信息的前提下构建学习器.但现有的降采样方法往往会破坏原始数据结构特性或造成严重的信息损失.本研究提出一种基于分层抽样的不均衡数据集成分类方法(简记为EC-SS),通过充分挖掘多数类样本的结构信息,对其进行聚类划分;再在数据块上进行分层抽样来构建集成学习数据成员,以确保单个学习器的输入数据均衡且保留原始数据的结构信息,提升后续集成分类性能.在不均衡数据集Musk1、Ecoli3、Glass2和Yeast6上,对比EC-SS方法与基于随机抽样的不均衡数据集成分类方法、自适应采样学习方法、基于密度估计的过采样方法和代价敏感的大间隔分类器方法的分类性能,结果表明,EC-SS方法能有效提升分类性能.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

深圳大学学报·人文社会科学版

CSSCI南大期刊 下单

国际刊号:1000-260X

国内刊号:44-1030/C

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。