增量学习的优化算法在app使用预测中的应用

作者:韩迪; 李雯婷; 王庆娟; 周天剑 北京理工大学珠海学院; 广东珠海519000; 澳门科技大学资讯科技学院; 澳门999078; 贵州商学院计算机与信息工程学院; 贵州贵阳550014

摘要:随着智能手机中app数量的不断增加,准确查询目标app渐趋困难.目前利用历史用户数据预测手机系统下一个使用的app算法存在两类问题:一是部分算法因未考虑训练数据日益递增,导致预测结果的准确度随时间增加而降低;二是虽然考虑到了增量数据,但增加了因增量数据而重新建模的时间,导致总体耗时增加.为减少建模时间,本研究提出Predictor预测系统,利用优化后的增量IkNN模型为用户提供app使用的预测功能.通过学习app特征的上下文关系,设计了聚类有效值(cluster effective value,CEV)策略,采用多维度特征方法来提高分类的准确度,从而提高预测准确度.实验结果表明,带有CEV策略的IkNN模型比默认的IkNN模型拥有更稳定的预测准确度,其应用模型Predictor能减少建模的时间,同时提高预测准确度.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

深圳大学学报·人文社会科学版

CSSCI南大期刊 下单

国际刊号:1000-260X

国内刊号:44-1030/C

杂志详情

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅