摘要:针对立体匹配中弱纹理区域和深度不连续区域的匹配精度问题,提出了一种基于多特征融合的树形结构代价聚合立体匹配算法.首先,融合图像颜色、梯度和图像的Census变换进行匹配代价计算;然后,在由原始图像生成的最小生成树上进行匹配代价聚合,并使用多方向扫描线优化,进一步提升立体匹配的精确度;最后,使用左右一致性检测标记出误匹配点,并进行视差修正.为了验证该算法的有效性,使用Middlebury测试集提供的测试图像进行测试,平均误匹配率为6.38%;分别对2种场景实际拍摄图像进行深度信息提取误差率测试,测试得到2种场景的测距误差率分别为5.76%和5.55%,证明了该算法的实用性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社