基于随机漂移粒子群优化的随机森林预测模型及水文应用实例

作者:崔东文; 郭荣 云南省文山州水务局; 云南文山663000; 云南省文山州文山市水务局; 云南文山663000

摘要:提出一种基于随机漂移粒子群(RDPSO)算法优化的随机森林(RF)预测方法,利用RDPSO算法优化RF决策树数量和分裂属性个数两个关键参数,构建RDPSO-RF预测模型,并与基于RDPSO算法优化的支持向量机(SVM)、BP神经网络预测模型作对比,以某水文站枯水期1~3月月径流预测为例,利用实例前43年和后10年资料对3种模型进行训练和预测.结果表明,RDPSO-RF模型对实例1~3月月径流训练、预测的平均相对误差绝对值分别为4.28%、3.88%、5.67%和3.74%、4.57%、4.88%,训练、预测精度均优于RDPSO-SVM、RDPSO-BP模型,具较好的预测精度和泛化能力,可为相关预测研究提供参考和借鉴.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

三峡大学学报·自然科学版

统计源期刊 下单

国际刊号:1672-948X

国内刊号:42-1735/TV

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅