基于深度学习的肝硬化识别

作者:鞠维欣; 赵希梅; 魏宾; 王国栋 青岛大学计算机科学技术学院; 青岛266071; 青岛大学附属医院; 青岛266071

摘要:为提高医学影像的识别准确率和效率,减少人为主观因素造成的误差,采用深度学习的方法自动识别正常肝与肝硬化影像,并针对传统卷积神经网络结构复杂,训练参数多和效率低等问题,使用基于卷积神经网络中的一种轻量级模型结构SqueezeNet;并利用迁移学习的方法,通过预训练和微调参数,可以避免数量集过少时而产生的过拟合题,并且实验结果取得了较好的分类效果;首次提出使用迁移学习后的轻量级卷积神经网络与传统的模式识别算法支持向量机相结合,实现对医学图像的分类,最终实验准确率进一步提高。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

青岛大学学报·工程技术版

省级期刊 下单

国际刊号:1006-9798

国内刊号:37-1268/TS

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。