摘要:为了解决生成对抗网络(Generative adversarial networks,GAN)的训练难问题,该文在Wasserstein GAN(WGAN)方法基础上提出了迭代化代价函数及超参数可变的生成对抗网络。为了对原始WGAN中的惩罚项进行改进,用迭代的方法增加惩罚项代替原始随机选取的方法。针对WGAN中固定代价函数惩罚项的超参数,提出变动超参数策略,其变动的依据是仿分布和真实分布之间的距离。在MNIST手写字体数据集和CELEBA人脸数据集上的实验表明,与传统WGAN方法相比,该文方法在生成器的拟合速度上有了显著提高,充分验证了方法的有效性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社