摘要:肉眼醋酸实验是宫颈癌筛查的重要手段,使阴道镜设备具备自动识别醋白区域的功能是解决在临床上缺乏有经验医生这一难题的有效方法。针对这一目的,提出了一种建立在灰度共生特征矩基础上的CV模型水平集算法。该方法首先使用k-means聚类从肉眼醋酸实验后的原始宫颈图像中分割出宫颈区域,继而利用合成的灰度共生特征矩对宫颈区域进行醋白特征提取并获得待分割的特征图,最后使用改进的CV水平集算法对特征图进行分割并得到醋白区域。实验结果显示:改进后的CV水平集算法比传统CV水平集算法的敏感度在平均值上低26.6%,比分水岭分割高47.6%,比模糊聚类分割高11.23%;其特异性在平均值上比水平集分割高29.45%,比分水岭分割低11.64%,比模糊聚类高45.23%;而以Jaccard Index(JI)统计的精度指标在平均值上比传统CV水平集算法高19.74%,比分水岭算法高23.27%,比模糊聚类高38.11%。该新方法在总体性能指标上精度更高。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社