基于深度学习的通信信号调制识别算法

作者:李唱白; 杨杰; 黄知涛; 王翔 中国人民解放军31082部队; 北京100097; 中国人民解放军国防科技大学电子科学学院; 长沙410073

摘要:随着通信技术的发展,信号体制、调制方式日趋复杂,例如CPM、OFDM等,这给调制识别技术带来了巨大挑战。近年来,深度学习技术由于其强大的特征提取能力和分类能力,被广泛应用到模式识别领域中。为了实现复杂调制方式的识别,文章将深度学习技术引入到调制识别领域,并提出一种基于改进的CLDNN模型的调制识别算法。CLDNN模型已被成功应用到语音识别领域,其表现出了强大的特征提取和分类能力。该方法在原有CLDNN模型的基础上,针对调制识别问题的特点,对CLDNN进行了改进。而且该方法不依赖于载波同步、码元同步等预处理。实验结果表明,该方法可同时识别12种信号调制方式和信号体制,信噪比在3dB以上时,整体识别准确率达到90%以上,并且可以较好地识别复杂调制方式和信号体制。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

空间电子技术

部级期刊 下单

国际刊号:1674-7135

国内刊号:61-1420/TN

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。