Toeplitz矩阵填充的四种流形逼近算法比较

作者:韩如意; 王川龙 太原理工大学数学学院; 太原030024; 太原师范学院工程科学计算山西省高等学校重点实验室; 太原030619

摘要:本文提出Toeplitz矩阵填充的四种流形逼近算法。在左奇异向量空间中对已知部分运用最小二乘法逼近,形成新的可行矩阵;并将对角线上的元素分别用均值,l1范数,l∞范数和中间数四种方法逼近使得迭代后的矩阵仍保持Toeplitz结构,节约了奇异向量空间的分解时间。最终找到合理的低秩矩阵来逼近未知的高秩矩阵,进而精确地完成Toeplitz矩阵的填充。理论上,分析了在一定条件下算法的收敛性。实验上,通过取不同的采样密度进行数值实验展示了四种算法的优劣。实验结果说明均值算法和l∞范数算法大多用的时间较少,但是当采样密度和矩阵规模较大时,中间数算法的精度较高。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算数学

北大期刊 下单

国际刊号:0254-7791

国内刊号:11-2125/O1

杂志详情

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。