摘要:本文提出Toeplitz矩阵填充的四种流形逼近算法。在左奇异向量空间中对已知部分运用最小二乘法逼近,形成新的可行矩阵;并将对角线上的元素分别用均值,l1范数,l∞范数和中间数四种方法逼近使得迭代后的矩阵仍保持Toeplitz结构,节约了奇异向量空间的分解时间。最终找到合理的低秩矩阵来逼近未知的高秩矩阵,进而精确地完成Toeplitz矩阵的填充。理论上,分析了在一定条件下算法的收敛性。实验上,通过取不同的采样密度进行数值实验展示了四种算法的优劣。实验结果说明均值算法和l∞范数算法大多用的时间较少,但是当采样密度和矩阵规模较大时,中间数算法的精度较高。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社