摘要:在各向异性网格下,针对具有Caputo导数的二维多项时间分数阶扩散方程,给出了线性三角形元的高精度分析.首先,基于线性三角形元和改进的L1格式,建立了一个全离散逼近格式,并证明了其无条件稳定性;其次,利用有限元插值算子与Riesz投影算子之间的关系及相关的高精度结果,导出了超逼近性质.进而,借助于插值后处理技术得到了超收敛估计.值得指出的是,单独利用插值算子或Riesz投影都无法得到上述超逼近和超收敛结果.最后,利用数值算例验证了理论分析的正确性.此外,对一些常见的有限单元在该方程的数值逼近方面,作了进一步探讨.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社