支持Unikernel的流式计算引擎:Hummer

作者:李冰; 张志斌; 钟巧灵; 程学旗 中国科学院计算技术研究所中国科学院网络数据科学与技术重点实验室; 北京100190; 中国科学院大学计算机与控制学院; 北京100049

摘要:社会计算中,社会公共安全、企业商务智能和舆情计算等众多领域均对实时计算的性能提出了越来越高的要求.流式计算引擎作为大数据计算研究领域的研究热点之一,致力于提供高吞吐量和低延迟的实时计算能力.流式处理任务对处理延迟非常敏感,数据价值随着处理时长的增长而快速递减.传统流式计算引擎设计中,操作系统、JVM等占用大量计算资源,如何提升计算资源利用率成为目前亟待解决的问题.为此,本文提出了一种基于C++语言实现的支持Unikernel的高性能实时数据分析计算引擎Hummer.首先,通过引入Unikernel机制,Hummer可绕过传统操作系统,直接运行于裸机或虚拟化层,减少传统操作系统无关组件带来的性能开销,支持分布式环境下的快速部署与启动,为高性能大数据计算引擎设计提出新的思路.其次,通过使用Unikernel对计算引擎进行封装,解决了C++应用需本地化编译、难以在集群中部署的问题.最后,系统使用灵活的网络通信方案,支持异构网络部署及网络资源隔离.实验表明,Hummer端到端处理延迟低于30ms,较Flink系统低2倍,较Spark Streaming低15.8倍,且吞吐量达到Flink的2倍.使用Unikernel封装的Hummer系统镜像仅为100MB,启动时间约为2s.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机学报

北大期刊 下单

国际刊号:0254-4164

国内刊号:11-1826/TP

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。