AdaBoostRS:高维不平衡数据学习的集成整合

作者:杨平安; 林亚平; 祝团飞 湖南大学信息科学与工程学院; 长沙410000

摘要:机器学习中类不平衡分布问题包含了不同类之间数据样本的偏差分布,导致学习过程更偏向于多数类。而高维数据的稀疏性使得分类的偏差更加明显,因此对于高维不平衡数据,维度灾难与类不平衡分布这两个挑战性问题相互叠加在一起,使得解决高维不平衡问题变得更为困难。针对这一问题,文中提出结合随机子空间和SMOTE过采样技术的AdaBoost集成方法(AdaBoost ensemble of Random subspace and SMOTE,AdaBoostRS)来处理高维不平衡数据的分类。具体地,AdaBoostRS通过随机子空间选取部分特征来训练每个分类器,以增加分类样本的多样性和降低高维数据的维度,然后通过SMOTE方法对降维数据的少数类进行线性插值,以解决类不平衡问题。基于8个高维不平衡的标准时间序列数据集进行实验,结果表明,以F-measure、G-mean与AUC 3个性能指标来进行评判,AdaBoostRS优于传统的集成学习方法。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机科学

北大期刊 下单

国际刊号:1002-137X

国内刊号:50-1075/TP

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。