TensorFlow架构与实现机制的研究

作者:费宁; 张浩然 南京邮电大学计算机学院、软件学院; 江苏南京210003; 大连交通大学软件学院; 辽宁大连116028

摘要:在大数据时代,云计算和大规模并行处理基础架构的共同发展不仅使得机器学习和深度人工智能有了更为广阔的应用空间,也激发了人工智能框架的快速迭代和部署。TensorFlow是Google的开放源代码的深度学习平台,已经在工业界有了广泛的应用。文中从TensorFlow平台的设计理念出发,分析了平台的框架和基本结构,对每个模块的功能和应用做了详尽阐述。在此基础上,通过建立一个多层深度学习神经网络,分析了输入层、隐藏层、输出层及激励函数的构建方法。最后在对TensorFlow实例运行和调试的基础上,演示了通过TensorBoard跟踪程序运行状态和参数调制的方法,给出了一维数据和多维数据的可视化结果。研究表明,相比较其他学术界的人工智能平台,TensorFlow有着更好的生态系统,支持更多的硬件架构,具备了一定的实用基础。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机技术与发展

统计源期刊 下单

国际刊号:1673-629X

国内刊号:61-1450/TP

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。