Slope One算法的改进及其在大数据平台的实现

作者:刘佳耀; 王佳斌 华侨大学工学院; 福建泉州362021

摘要:针对原始Slope One算法计算推荐预测值时忽略了项目之间的相似性,以及大数据时代下推荐效率低下的问题,提出基于Spark平台的聚类加权Slope One推荐算法。通过Canopy-K-medoids聚类算法生成最近邻居集合;在最近邻集中用Slope One算法上加权项目之间的相似性进行推荐预测;在Spark平台上实现并行化。通过在电影数据集上的实验得出,基于Spark平台的优化算法与传统Slope One算法、加权项目相似度的Slope One算法相比,提高了推荐精度。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机工程与应用

北大期刊 下单

国际刊号:1002-8331

国内刊号:11-2127/TP

杂志详情

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。