摘要:针对图像语义分割方法预测出的目标大多存在边缘模糊和准确度较低的问题,提出多类别边缘感知的图像分割方法.首先设计一种用于多目标分割的Multi-sigmoid 损失函数,结合COCO 数据集预训练的FCN+CRF 网络,建立可优化类别边界的语义分割模型;然后在全局嵌套边缘检测(HED)模型的基础上,增加自底向上的信息解码部分,利用亚像素(subpixel)的图像增强算法实现上采样以及相邻尺度之间的特征融合,构建出可用于边缘检测的深度多尺度编解码模型(MSDF);最后将FCN+CRF 提取到的分割信息作为一元势, MSDF 检测到的边缘特征作为二元势,设计全局能量函数并计算最小值,实现分割结果的进一步优化.在2 个标准数据集Pascal context 和SIFT Flow 上进行了实验,结果表明,该模型的总体性能较为优越,可应用在图像语义分割和显著性目标检测等相关领域.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社