摘要:为准确预测冬季果园土壤温度,建立了蓄水坑灌条件下BP神经网络土壤温度预测模型(BP-WSPI-T)、遗传算法优化的BP神经网络土壤温度预测模型(GA-WSPI-T)和增量逆传播学习算法优化的BP神经网络土壤温度预测模型(IBP-WSPI-T),采用坑内平均气温、地表温度、沿相邻两蓄水坑中心连线距坑壁的距离和距坑壁5cm处分层土壤最低温度为模型输入,对距坑壁15、25和35cm处分层土壤最低温度进行预测,并通过与田间实测数据的统计学分析来判定预测效果。结果表明:BP-WSPI-T、GA-WSPI-T和IBP-WSPI-T模型的平均相对误差分别为8.19%、4.41%和7.57%,GA-WSPI-T模型的预测效果最好,较BP神经网络预测精度得到了很大的提高,建议采用GA-WSPI-T模型对蓄水坑灌冬季果园土壤温度进行预测。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
节水灌溉杂志, 月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:试验研究、水环境与水资源、工程管理、工程技术、信息、资讯、水环境与水生态、经验点滴、经验与建议、书讯、理论研究等。于1976年经新闻总署批准的正规刊物。