基于Faster R-CNN模型的低空平台偏振高光谱目标检测

作者:黄伟; 曹宇剑; 徐国明 中国电子科技集团公司第二十七研究所; 河南郑州450047; 中国人民解放军陆军炮兵防空兵学院; 安徽合肥230031; 安徽新华学院信息工程学院; 安徽合肥230088

摘要:随着无人机等低空平台在侦察领域的不断扩展以及对性能要求的不断提高,各应用场景对目标检测精度和速度也提出了越来越高的要求。传统的目标成像方法难以满足图像质量需求,人工识别目标的方法也无法应对战场环境的快速变化。结合深度学习和偏振高光谱成像技术的发展,通过模拟偏振高光谱低空目标检测平台,提出基于Faster R-CNN的地面军事目标检测方法。采用区域建议网络模块进行模型训练,而在目标检测阶段通过对特征图进行兴趣区域池化操作得到建议特征图,最后利用建议特征图完成目标类别判定。实验选取3种典型的军事车辆缩比模型,通过偏振高光谱相机在室内外模拟环境中获取目标在不同场景条件的图像数据,以及某型无人机在低空条件下的地面车辆目标数据进行实验验证。实验表明,该方法在有效完成地面目标的检测时,能够达到理想的检测精度和速度。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

红外技术

北大期刊 下单

国际刊号:1001-8891

国内刊号:53-1053/TN

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅