摘要:光伏发电具有随机性和不确定性,太阳辐照度和温度会影响光伏出力。基于光伏系统历史记录资料,采用改进BP神经网络算法对光伏电站进行间接短期功率预测。该改进算法通过不断调整学习率来调整网络收敛速度,避免陷入局部最小;综合考虑电力系统的经济性与环保性,建立了以系统综合发电成本最小和污染物排放费用最低的综合单目标优化模型;并采用改进BCC优化算法对包含光伏电站的10机电力系统进行优化。算例分析结果表明,改进BP神经网络算法能准确预测太阳辐照度,且改进BCC算法能有效解决优化问题,该优化模型的合理性与有效性也得到验证。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社