基于支持向量机模型的地铁进站客流量预测

作者:郭文; 肖为周; 秦菲菲 苏州大学轨道交通学院; 江苏苏州215131

摘要:为了更精确地预测短期站点客流量,动态调整城市轨道交通的日常客流方案,采用支持向量机模型对预测地铁客流量。首先,通过对AFC数据分析,利用上周同期进站量、前一天同期进站量、当日前两个时段进站量以及高峰和非高峰时段参数作为模型的输入变量;然后,构造支持向量机预测模型并运用粒子群算法优化模型(PSO-SVM模型),实现地铁站点客流量预测,并进行不同模型预测误差的比较分析;最后,以苏州地铁数据为例,预测汾湖路地铁站的进站客流量。结果表明,优化模型能够有效改善预测误差,预测结果更为准确,证明PSO-SVM方法能有效用于地铁进站客流量的预测研究,为地铁进站客流量预测提供了新的方法。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

河北工业科技

统计源期刊 下单

国际刊号:1008-1534

国内刊号:13-1226/TM

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。