时间:2022-09-05 15:29:15
序论:在您撰写生态系统论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
航运金融生态系统的构成通过比较自然生态系统和金融生态系统,我们可以发现,作为金融系统的分支,航运业的金融系统也是一个具有很多生态学特征的系统,通过与生态系统和金融生态系统的比较分析,我们可以简要的得出航运金融生态的组成结构图,我们可以对航运业中金融生态系统的要素关系进行简要的分析:航运金融生态系统包括了航运金融生态主体和航运金融生态环境两大部分。航运金融生态主体中的生产者,主要包括各类航运金融机构、金融市场,如各类银行、保险公司、交易所等,它们将资金从没有生产性用途的人手中导入有生产性用途的航运企业手中。作为航运金融产品的消费者,主要包括航运、港口以及相关企业,它们通过船舶融资、融资租赁、IPO上市等方式获得资金,并将获得的资金运用到运输生产服务中。作为金融废弃物的分解者,主要指金融中介和监管机构,航运金融的发展,需要保险经纪、保险公估、法律服务、会计、船舶检验等各类中介机构提供专业化服务,以保证航运金融生态链的顺畅运作[3]。在航运金融生态环境因素中,外部经济环境包括一个国家和地区的经济发展水平、结构等方面内容。法律制度环境是指航运金融运行所依托的法律和制度。创新环境是指为适应航运实体经济的发展,而对制度安排、业务品种、金融工具、金融产品等方面所进行的创造性的变革和开发活动,它是金融结构提升的主要方式和金融发展的重要推动力量。航运金融离不开信息、技术和人才方面的支持,如航运企业在资金结算、管理等方面需要银行业提供较好的技术、信息服务等。另外,航运金融业是涉及航运、金融、法律等多方面的产业,对从业人员素质要求较高。
航运金融生态系统的运行机制分析
基于自然生态和金融生态的组成结构,我们建立了航运金融系统的生态结构图,在这个生态结构图中,存在各种要素与元素,这些要素与元素之间的关系十分复杂,包括上下游的关系、平行关系以及间接的联系等。为了揭示立航运金融生态的运行机制,本文尝试从生态圈的角度建立航运金融生态圈,如图2所示,外圈表示航运金融生态环境,内圈为航运金融生态环境主体。外圈的航运金融生态环境包括了外部经济环境,法律制度环境,创新环境,技术、信息、人才环境等,这些都是航运金融机构和金融体系生存和发展的基础条件。内圈的航运金融生态主体结构表达的是航运金融的生产者、消费者、分解者之间的循环关系,反映航运金融主体内部各层次之间的协作关系。航运金融生态主体和航运金融环境组成一个紧密联系的生态圈,相互之间具有很强的依存性。航运金融生态主体和生态环境各自发挥自身的特点和作用,系统才能发挥有效功能,然而在航运金融生态系统中,系统是否协调取决于其内部各个组成部分是否结构合理、大小匀称、功能配套。
航运金融生态系统和谐性分析
航运金融生态系统和谐性判别模型航运金融生态系统是否能够可持续性发展,取决于航运金融生态系统内部的结构、发展水平与金融生态环境是否和谐。从国内外的既有文献看,多集中于金融生态环境评价指标体系的构建,对于金融生态系统和谐性评价指标体系的研究相对较少,本文借鉴和谐系统理论[4],对航运金融生态系统的和谐性进行分析,首先是对航运金融产业生态主体的和谐性进行判别,主要是对航运金融生态中的生产者、消费者和分解者三个子系统之间的和谐程度判别,判别标准依据设定的和谐判别区间,若未通过此判别,则判别结束,认为航运金融系统是不和谐的,若通过判别,则还需将航运金融生态主体系统和航运金融生态环境系统进行和谐性判别,从而得出航运金融生态系统是否和谐。为了描述系统内部或系统之间各要素之间和谐一致、配合得当的关系,我们采用和谐度值来衡量系统内部或系统之间协调状况好坏的定量指标。本文利用模糊数学中的隶属度概念,对两个系统之间的和谐程度进行评价。和谐度的测度依据系统是否根据时间变化,和谐度的测度分为静态和谐度和动态和谐度的测算两类。(1)静态和谐度。和谐发展是一个内涵明确而外延不明确的模糊概念,因此,可采用模糊数学中隶属度概念对其进行描述[5],隶属度变化规律可以通过隶属度函数来反映,和谐度函数公式如下:(式略式中:US为静态和谐度;x为观测值;x'为和谐值,可通过建立回归方式求得;s2为方差。实际值越接近和谐值,静态和谐度就越大,说明系统的和谐程度就越高。静态协调度反映了系统在某一特定时期的和谐程度。两系统之间的静态和谐度计算公式为:(式略)式中,u(i/j)是i系统对j系统的静态和谐度,是i系统的观测值xi与j系统观测值xj要求的协调值的接近程度;反之,u(j/i)是j系统对i系统的静态和谐度。就两个系统而言,静态和谐度Cs(i,j)和系统和谐状态如表1所示。(2)动态和谐度的测度。动态和谐度反映的是两系统相互协调发展的程度,公式为:(式略)
1.1关于模型模拟法,中国学者借鉴国外经验改进了CEVSA,CASA,GLO-PEM,BEPS等多个陆地生态系统碳循环模型,同时根据中国的情况研发了AVIM2,Agro-C,FORCCHN,DCTEM等陆地生态系统模型,研究了陆地生态系统的净初级生产力和碳储量、气候变化和土地利用变化对中国陆地生态系统碳循环的影响等问题。这些模型现在已经被广泛地应用于草地、农田、森林等生态系统生物量和生产力的模拟,并且对不同的生态系统类型分别建立了不同的参数和计算系统。模型一般以天或月为运行的时间步长,模型参数涉及气温、降雨量、光照等气候因子,植物本身的生物学特性、土壤特性等指标来计算生态系统的生物量和生产力。
1.2现场实测法现场调查法一般是指设立典型的样地,通过收获植被生物量、枯落物和土壤等碳库的碳储量,在连续测定的基础上可以分析生态系统各部分碳库之间的流通量,输入系统的NPP和离开系统的枯落物与土壤的碳排放速率。然而对于大面积的森林植被采用收获法测定碳汇量比较困难,一般伐倒少许树木,确定生物量与胸径或树高的回归关系,然后利用回归关系和所有树木的实测胸径或树高推算样地的生物量,而区域性的森林资源清查数据主要是木材材积量,还需要借助生物量换算因子(BEF)等方法才能将其转换为森林植被生物量,再根据生物量与碳量的转换系数求林地的固碳量。对于园林植被,一般根据不同植物个体的叶面与胸径、冠高或冠幅的相关关系,通过实测建立不同植株个体绿量的回归模型,应用回归模型计算绿地或地区绿量的总和,从而在实测单株植物固定CO2碳量基础上,根据绿量即可计算出植被的固碳量。
1.3遥感估算法遥感估算法是指通过遥感手段从遥感数据中获取归一化植被指数(NDVI),在GIS技术的支持下,建立NDVI与叶面积指数及植被覆盖度等的关系,结合地面调查,推断出植被指数与生物量之间的关系进而求得生物量,然后计算碳汇储量。随着遥感技术的发展,遥感估测植被碳汇成为较为便捷的方法,适用于大尺度范围内的植被碳库的变化研究。近年来的研究逐渐将遥感与模型相结合,通过遥感反演获取地面物理参数,如地面反照率、叶面积指数、土壤湿度等,可直接作为陆地生态系统碳循环模型的驱动变量或参量,以充分发挥模型的过程机理定量化和遥感信息的宏观、动态的长处。
1.4通量观测法通量观测法是指建立在气象学基础上,通过测量近地面层的湍流状况和被测气体的浓度变化来计算被测气体的通量的方法,是最为直接的可连续测定CO2和水热通量的方法,也是目前测算碳汇最为准确的方法。目前,基于涡度相关技术的通量观测已经成为研究陆地生态系统碳循环与全球变化科学的重要手段,其特点在于采用较为精密的仪器包括三维声速风速仪、闭路红外线CO2/H2O分析仪等,直接对植被与大气之间的通量进行计算,直接长期对陆地生态系统进行CO2通量测定,同时又能为其他模型的建立和校准提供基础数据。这一方法在区域和国家通量观测研究网络(AmeriFLUX,CarboEurope,OzFlux,Fluxnet-Canada,AsiaFlux,KoFlux等)中得到广泛使用。
2植被碳汇计算方法应用可行性分析
2.1路域生态系统的特征分析公路具有其独特的大尺度线性特征,绝大部分的公路都横跨多个生态系统,所以一条公路的路域生态系统通常包括多个生态系统的综合特性,是多种生态系统的复合体。公路工程的建设造成公路周边的土壤条件、光照状况、水分等环境因子发生改变,形成路域小环境。同时持续的人为干扰,引发路域植物群落内部对养分水分空间的竞争以及和外来人工绿化种的竞争,导致路域植被群落稳定性差,易退化。与稳定的自然生态系统相比,路域生态系统内部分化出许多由一种或若干种植物所构成的小群落,物种组成和群落结构具有自身特点。正是由于公路线性以及路域生态系统的复杂性,植被碳汇的估算较为复杂,现有的计算方法在交通行业的应用也受到很多的限制。因此,在方法的选择上,也应当根据不同的目的、不同的研究范围进行适当的选择与调整。
2.2模型模拟法众多的模型一般应用于区域或全球尺度的自然生态系统植被碳汇估算。模型参数获取需要长期的定位观测等方式获得,而对于具有小环境特点且呈带状分布的路域生态系统而言,模型参数的获取受到了很多限制,如若参考自然生态系统的参数值,可能会带来更大误差。此外,模型的构建是基于对现实过程的简化,在此过程中众多的假设和主观判断给模型带来了很多隐藏的误差。而且,模型参数和输入数据的不确定性同样影响着模型模拟结果的精度。因此,就目前交通行业的现状来看,模型模拟法不宜作为路域植被碳汇估算方法。但是,在交通行业逐步建立起完善的交通环境监测网络基础上,可获取路域生态系统小气候的参数时,再对部分模型参数进行校正,对模型进行改良,将模型模拟法用于验证与校核其他计算方法,提高碳汇计算精度。
2.3现场实测法目前,通过现场实测法对陆地生态系统植被固碳量的计算相对成熟,很多学者认为,以实测的方法来计算植被碳汇是误差最小的测算方法。但是该方法耗时耗力,如若采用该方法对现有路网路域生态系统中的植被进行碳汇估算,由于公路里程的原因工作量将异常巨大,在短时间内很难完成。对此,在路域生态系统植被碳汇的估算中,可选择典型的路段或区域采用该方法进行计算,并与遥感估算等方法相对比和结合,进行数据的校正,提高计算精度。
2.4遥感估算法利用遥感估算植被NPP就是基于地面上不同植被类型对不同波长太阳光的反射率来区分地表的植被覆盖。公路是线性工程,长数十至数百公里,同时植被类型多样,因而遥感技术的应用大大节约了路域植被现场调查的人力和时间成本。但同时路域范围宽约为几十米,在利用遥感技术时,对遥感图像的分辨率要求较高,而高分辨率遥感影像价格也非常可观,这样就增加了遥感影像的购买成本。因而在实际应用过程中,也需要考虑与现场实测法的结合,在满足计算要求的前提下,节约成本。
2.5通量观测法通量观测法是基于微气象学原理实现对监测样地的连续、长期观测,可应用于不同的生态系统碳通量的监测中,形成监测体系。但该法仪器设备价格较高,配套设施建设要求高,同时测量难度大,需要专业技术人员操作和定期维护。这些都限制了该方法在路域生态系统中的应用。因此,在现有条件下即使在路域小范围内开展监测也具有一定的难度。然而,为保证路域生态系统植被碳汇估测的准确性,在今后的科学研究中可以借鉴现有通量观测研究网络的建设经验,逐步选择典型的路域环境建立观测站点进行长期观测实验,积累相关基础数据,实现路域生态系统长期碳通量观测。
3讨论与建议
目前常用的稳定碳同位素测定方法有:质谱法、核磁共振法和光谱法,其中质谱法是稳定同位素分析中最通用、最精确的方法。稳定同位素质谱分析法是先使样品中的分子或原子电离,形成各同位素的相似离子,然后在电场、磁场的作用下,使不同质量与电荷之比的离子流分开进行检测。稳定同位素质谱仪不仅能用于气体,也可用于固体的研究,能用于几乎所有元素的稳定同位素分析。近年来,随着生物地球化学元素循环研究的发展,借助同位素质谱(EA-IRMS),多用途气体制备及导入装置-同位素质谱(GasBenchII-IRMS)及痕量气体预浓缩装置-同位素质谱(PreCon-IRMS)联用技术的兴起,碳稳定同位素的研究有了更快的发展。稳定同位素质谱仪测定同位素比率大致分3个步骤(见图2):(1)样品的收集、制备和前处理;(2)将材料转化成具有所测元素的纯气体,(3)进入质谱仪检测。
一般样品通过前处理后,同位素质谱联用装置可以完成后续的气体转化和测定。通常,稳定同位素质谱仪在计算机辅助下直接给出同位素比值,更先进的仪器已可以进行自动化分析,如美国热电公司的Thermosci-entificMAT253,德国元素公司的Isoprime100稳定同位素质谱仪等。植物和土壤等固体样品,在进行同位素质谱分析之前必须进行干燥、粉碎、称量等处理。如果采集的土壤样品中含有无机碳,在干燥前应该进行酸处理。制备好的样品称量后通过固体自动进样器送入到元素分析仪-同位素质谱(EA-IRMS)进行碳氮同位素测定。测定土壤样品中碳酸盐δ13C的样品称量后放入样品管,置于GasBenchII仪的恒温样品盘中通过酸泵滴加100%磷酸,生成的CO2气体通过气体自动进样器送到同位素质谱进行碳同位素测定。
液体样品包括土壤DOC和微生物生物量碳(MBC)等浸提液在进行同位素质谱分析之前要进行分离转化、冷冻干燥等前处理。其中土壤DOC和微生物MBC按照参考文献方法用0.05mol/LK2SO4溶液提取,浸提液经冷冻离心浓缩或者冻干机干燥获得的粉末称量后通过固体自动进样器送入到元素分析仪-同位素质谱(EA-IRMS)进行碳氮同位素测定。气体样品包括空气和培养富集气体,用已抽真空的顶空样品瓶采集,其中CO2气样需采集20~30mL,样品中的碳同位素比值可直接通过多用途气体制备及导入装置-同位素质谱联用仪(GasbenchII-MS)测定。对于空气中的CH4需采集100~150mL,样品中的C同位素比值可通过带有全自动气体预浓缩装置-同位素质谱联用仪(如,美国热电公司的PreCon-IRMS)测定。
二、稳定同位素技术应用
土壤是地球表层最为重要的碳库也是温室气体的源或汇,但对关键过程及其源或汇的研究却十分有限。随着全球变化趋势的日趋明显,农田生态系统在碳素的吸收、转移、贮存和释放过程中所起的作用越来越受到人们的关注。农田土壤碳的动态变化和循环特征及其微生物驱动机理研究,成为当今生态学、生物地球化学和环境科学研究的共同热点。
1.稳定同位素技术与Keeling曲线法
土壤呼吸是农田土壤碳循环的重要组成部分,也是其排放CO2到大气中的主要途径。土壤呼吸以根系呼吸和土壤微生物呼吸为主。利用微气象法能够测定生态系统CO2通量,但是不能精确量化和区分根系呼吸和土壤微生物呼吸作用。应用稳定碳同位素技术,通过脉冲标记法(13C-CO2标记示踪)和持续标记法(自然丰度或FACE),造成根呼吸和土壤微生物呼吸CO2碳同位素组成的差异,然后分别测定土壤总呼吸、土壤微生物呼吸和根呼吸的δ13C值,追踪土壤呼吸的来源,并根据碳同位素质量守恒原理即可区分根系呼吸和土壤微生物呼吸,定量土壤呼吸中根系呼吸和土壤微生物呼吸的比例。目前用于测定土壤呼吸CO2碳同位素组成的取样方法包括静态箱(KeelingPlot)法、静态箱平衡状态法和动态箱连接红外分析仪法等,其中静态箱法相对比较成熟,而且成本低廉。Buchmann和Ehleringer采用静态箱研究了冠层尺度C3(紫花苜蓿)和C4(玉米)作物光合作用和土壤呼吸通量及其δ13C同位素组成变化规律,通过土壤有机碳及土壤呼吸的δ13C同位素组成差异,区分了轮作系统土壤呼吸及作物光合作用对净通量的贡献。随着静态箱方法经过不断的修改和完善,通过Keeling曲线法测得的农田生态系统呼吸释放CO2的碳同位素组成(δ13C)能够反映作物土壤根系和微生物呼吸释放CO2的δ13C同位素组成,以较好地理解生态系统的同位素鉴别。
2.土壤有机碳来源及其周转规律研究
2.1C3/C4植物变迁自然丰度法
碳、氮、氧、氢这些轻元素在自然环境中的循环和周转过程中,其同位素比值间的差异较大,同位素分馏效应比较明显,利用13C/12C、15N/14N、18O/16O和D/H同位素丰度比的变异携带有环境因素的信息,具有原位标记特性。通过测定土壤或者植物中δ13C,可以研究植物-土壤生态系统碳来源及其周转规律。稳定碳同位素比值(δ13C)分析方法在土壤有机质分解程度评估、土壤有机质来源探讨、C3/C4植被变化历史研究等领域中得到日益广泛的应用。由于不同植物类型具有不同的δ13C值,C3植物δ13C的变化范围为-9‰~-17‰。;C4植物δ13C的变化范围为-10‰~-22‰,当C3植物被C4植物所取代时就会导致土壤有机质δ13C值的改变。因此,可以通过土壤有机碳δ13C值相对于参考土壤(未改变种植作物的土壤)的变化来探讨土壤有机碳的周转速度,及不同C3和C4植物来源碳占土壤碳库各组分及气体CO2中的比例。Balesdent和Mariotti最早通过C3和C4植物类型的变迁来研究土壤碳库各组分的稳定性及周转规律,研究发现,长期耕种小麦(C3作物)的农田土壤在连续13年种植玉米(C4作物)后,22%的土壤有机碳获得了更新,而且不同粒径土壤有机碳的周转速率不同,其中>50μm和<2μm团聚体中含有更多的新碳,而粘粒中土壤有机碳的更新速度最慢。
Dignac等通过C3和C4植物类型变迁长期定位试验,采用铜氧化法结合稳定同位素质谱分析技术进一步研究了植物根系残留物(木质素)的稳定性及其对土壤有机碳库的贡献,结果发现,连续9年种植玉米(C4作物)对土壤有机碳含量、木质素及其生物降解程度(分解和周转)虽未产生显著影响,但其碳同位素组成发生了显著变化,其中有机碳中9%而木质素有47%来源于玉米(C4作物),木质素大分子的周转速率较土壤有机碳库更快。作为土壤碳库中的活性组分,MBC的稳定性和周转速率也可以通过土壤碳自然丰度δ13C值的变化进行研究。Blagodatskaya等通过54d室内培养实验研究了C3和C4植物类型的变迁后各碳组分的周转速率、新老碳对土壤有机碳(SOC)、微生物碳(MBC)和CO2气体的贡献以及微生物在碳分馏过程中的作用。研究结果发现,土壤SOC及MBC的周转时间分别为16.8年和29~30d,而且随着种植年限的增加,周转时间将会延长。新老碳库对SOC、MBC和CO2气体的贡献不同,其中MBC中20%碳来源于老碳(C3),CO2气体中60%来源于老碳(C3),由于微生物对土壤老碳的偏好利用,土壤中SOC中新碳贡献将逐年增加。13C自然丰度法灵敏度和分辨率较低,而且C3/C4植物更替,限制了应用。
2.2稳定碳同位素示踪法
碳的稳定同位素(13C)示踪技术能有效地阐明地下碳动态变化和土壤碳储量的微小迁移与转换,以及定量化评价新老土壤有机碳对碳储量的相对贡献。利用13C标记秸秆研究作物秸秆、残茬或作物根系在土壤中的分解动态或对土壤有机质的贡献,可为阐明土壤碳转化过程及土壤肥力演变过程提供新的技术支撑。以植物残体形式输入的作物光合碳对土壤有机碳库的贡献及转化规律已有大量的研究。窦森等在室内培养条件下,研究了添加13C玉米秸秆后,土壤有机碳库中胡敏酸和富里酸含量随时间的动态变化,发现在培养期间内,原有土壤有机碳较新形成的有机质的分解速度慢;同时也证明该方法用于研究短期培养条件下新加入有机质在土壤中的分解动力学是可行的。
随着同位素技术的发展和应用,研究者开始了对生育期内植物—土壤体系中碳分配的量化研究,定量化评价根际沉积对土壤碳储量的相对贡献。比如,Li-ang等通过13C稳定同位素培养试验研究了玉米根际沉积碳在土壤碳库中的分配,认为水溶性有机碳(DOC)和MBC是“新碳”的主要去向。而Yevdokimov等的研究表明燕麦根际沉积碳的主要去向为MBC、呼吸碳和SOC,而土壤DOC并不主要来源于“新碳”。何敏毅等应用13C示踪技术研究表明,玉米在其生育期内输入到地下的总碳量为4.6t•hm-2,其中42%存在于根系中,7%转化为土壤有机碳,剩下的41%通过根际呼吸进入大气。不同研究结果的差异可能由于不同学者采用的研究方法、作物及土壤类型不同造成。
3.稳定同位素探针技术(SIP)
农田系统是半开放的人工系统,进入土壤的新鲜有机物质包括自然归还的植物残体和根系分泌物、人为归还的有机肥等,而系统碳输入是影响土壤有机碳动态的最主要因素之一。土壤微生物是土壤有机质、土壤养分转化和循环的动力,是土壤有机质转化的执行者。外源有机质(“新碳”)进入矿质土壤基质后,发生由微生物介导的物理–化学–微生物的转化过程。“新碳”输入土壤,经土壤微生物作用转化为有机质,影响土壤有机碳含量及其组分的变化,或转化为CO2和CH4等气体返回大气。应用同位素示踪技术结合微生物分子生物学技术(PLFA/DNA/RNA-SIP)能够定量化“新碳”在土壤碳库中的转化动态及其对土壤碳储量的相对贡献,阐明微生物种群结构与“新碳”转化及稳定性之间的关系。Lu等用13CO2对水稻进行脉冲标记,通过13C-PLFA图谱分析发现,不同根际微生物对植物光合作用产物有不同的吸收特征,证明了水稻根际微生物种群与植物光合作用密切相关。进一步对土壤13C-DNA进行分析,发现水稻ClusterIArchaea类群的核糖体RNA中含有13C,表明此类细菌可能在由植物碳源产生甲烷的过程中起重要作用,对全球气候变化具有重要影响。
Bastian等定量研究了土壤外源添加小麦秸秆后,参与秸秆分解过程的(共168d,8个时间点)微生物种群结构动态变化,结果发现在秸秆降解的前期(14~28d)和后期(28~168d)细菌和真菌群落结构差异明显,这主要是秸秆降解过程中养分由丰富向贫瘠转化诱导的微生物r选择和k选择的结果。另外,农田土壤除作物光合碳根际输入外,还存在大量的光合自养微生物,通过卡尔文循环固定大气CO2合成有机物,并转化为土壤有机碳,对农田土壤有机碳累积的贡献不可忽视。而农田土壤中参与了“新碳”的输入、分配与转化的主要微生物种群,及其与“新碳”转化的相互关系如何,有待进一步研究。SIP能够将功能和种群分类联系起来,在微生物生态学研究中有着巨大的应用潜力,随着可用底物种类的增加(N、H),SIP技术将有可能鉴定出更多在碳、氮及其他元素循环中发挥重要作用的微生物。
三、展望
稳定碳同位素技术已在土壤有机质的转化、土壤中碳素的来源及其影响因素等方面得到了较广泛的应用。然而,我国农田土壤碳同位素研究大多集中于对C3和C4植物碳同位素、土壤CO2和土壤有机碳的同位素组成的测定与分析,对于农田土壤管理方式以及土壤质地、温度等环境条件对土壤碳周转过程的影响机理研究还很少。另外,土壤微生物是土壤有机质和土壤养分转化和循环的动力,是土壤有机质转化的执行者,但有关微生物种群结构和数量与农田土壤碳转化及稳定性之间的关系尚知之甚少。因此,有以下几方面的问题有待进一步的研究:
(1)利用13C自然丰度法和示踪技术相结合,定量土壤有机碳的周转速度,确定土壤有机碳的来源,深入研究不同农田管理方式对农田土壤碳素累积和转化的影响;
(2)分析土壤13C有机碳富集的基本机制、阐明土壤13C丰度与植被类型、土壤温度、质地之间的关系,进一步评价不同农田生态系统碳贮存潜力;
JamesF.Moore在《竞争的衰亡》一书中提到,GregoryBateson一生致力于复杂系统工作的研究,对其在商业生态系统方面的思考影响巨大。Biggiero和WysockiJr.等提出复杂巨系统的理论提供了另一个视角来思考组织的管理。如果组成系统的成分数量庞大且种类众多,这些成分之间的关系也错综复杂,还形成多种层次结构,那么我们称这类系统为复杂巨系统。自然生态系统是复杂巨系统,社会系统也是复杂巨系统。相对于自然生态系统,社会系统由于人的意识作用更复杂。商业生态系统是社会系统,因此,商业生态系统也是一个复杂巨系统。nGeneraInsight智库董事会主席、著名新经济学家TapscottDon在《Macrowikinomics:RebootingBusinessandtheWorld》一书中提到,企业在经营发展过程中,与消费者一起组成共同体,对公司的决策经营非常有好处。自组织理论是20世纪60年展起来的一种系统理论,主要包括耗散结构理论、协同论、突变论、超循环理论等,吴建材利用自组织理论研究商业生态系统进化机制,认为只要条件满足,商业生态系统也可以以超循环的方式实现自组织进化。Backers认为复杂系统理论的研究成果对分析企业与竞争者、供应商和消费者之间的复杂关系非常有效。
2商业生态系统的研究方向
综上所述,所谓的商业生态系统,其实就是一个基于自然生态系统思想精心创建起来的企业网络组织。和自然生态系统一样的是,商业生态系统也是复杂巨系统,在条件满足的时候,同样能实现自组织的进化。与自然生态系统不同的是,参与系统的成员是被精心选择发展的;与普通企业网络组织不同的是,它具备生态系统的特点,通过企业生态位的分离,创造协同进化的条件。同时,它又符合复杂巨系统的特征。根据对国内外学者研究的成果看,目前针对商业生态系统的研究可以分为两个方向,即自然生态系统的方向和复杂系统研究的方向。
2.1引用自然生态系统知识方向从这个方向开展研究的学者认为商业世界中的企业组织就像自然生态系统中的生物一样,企业与企业之间既存在着竞争,也有合作的关系,它们之间在竞合过程中形成了类似于自然界中食物网的价值网络。每个企业是这个价值网络中的一个成员(结点),承担了这个价值网络中的一个功能,比如苹果移动生态系统中的富士康科技公司,其主要功能就是为苹果公司生产iphone手机,一旦富士康科技公司的生产出现大面积的问题,将严重影响苹果公司iphone手机品牌的声誉。因此,商业生态系统关键企业(结点)的缺失将对商业生态系统的稳定和发展造成重大的破坏。从自然生态系统方向开展研究的学者,特别重视对生物学和生态学中关键知识的延伸理解和使用。比如在商业生态系统的创建形成方面,JamesF.Moore认为,如同自然生态系统的形成主要是“集合定律”的作用一样,商业生态系统的形成同样适用这个规律;EricSchmid相信“企业组织与自然界的生物体一样具有DNA”,这种组织DNA(即企业文化、企业行为和企业精神等方面)主要来自于组织最初的创立者或组织强有力的领导者;DanielZ.Sui研究发现,自然界中,生物间的竞争导致其生态位的分离,并最终形成自然界中生物的多样性现象,也才有了今天我们见到的如此缤纷绚丽的世界。商业世界也有相似的情况,同一条食街的酒家选择了“回避性定位”的策略,减少了彼此间的竞争,而且群集效应为他们带来了更多的消费者,实现了“协同进化”。
2.2复杂系统研究方向从复杂系统方向开展研究的学者认为,基于线性思维的理论并不适用于现实的商业世界,现实的商业世界运行错综复杂,不可预测。李志坚等认为商业生态系统是一个典型的复杂适应系统,具有适应性、协同进化、自组织、涌现、反馈和有意识选择的复杂适应性特征;刘健辉认为商业生态系统通过自我组织、突发性和协同进化而得到发展,并以此获得适应性。吴建材运用基于耗散结构理论、协同学理论和超循环理论分析了商业生态系统的演化发展及其动力问题,指出商业生态系统的演化发展的方式是协同进化,具体来说,是通过内部各子系统的竞争实现协同,形成系统发展的序参量,并支配着商业生态系统的进化发展。Biggiero和Lucio强调自组织过程在创建商业生态系统的重要性。
2.3存在的问题商业生态系统是一种崭新的研究领域,在体系上还没有完善,需要更多的学者和专家来补充和发展,任何一个有益的方向都是值得探索的。总的来说,自然生态系统方向的研究更注重商业生态系统在实践上的运用,尤其是达尔文的自然选择学说等生态学理论早已深入人心,故这个方向的研究更容易让人理解。不过,该方向的研究未能很深入到商业生态系统的基础问题。复杂系统研究方向则不同,它从系统演化发展的角度,引入包括序参量、熵等概念,深入理解商业生态系统的自组织进化的条件、动力和方式,有助于整体把握商业生态系统的本质和内在机制。随着信息通信技术(尤其是互联网技术)的发展,企业组织将摆脱空间和时间的限制,迎来企业组织结构的大变革时代,管理和任务可以通过网络通信技术进行集成,自组织管理模式将会是未来组织管理的一个研究方向。
3商业生态系统的主要研究领域
对国内外学者的研究进行归纳总结,我们发现,目前商业生态系统的研究领域主要集中在以下几方面。
3.1基于商业生态系统视角研究企业的竞争战略像美国苹果公司一样,组建以自己为中心的商业生态系统是所有渴望成功的企业梦寐以求的追求。因此,研究商业生态的开拓、领导和创新就成了学术界和企业界研究的热点。JamesF.Moore在《竞争的衰亡》一书中写道,商业生态系统的演化发展经历四个阶段,依次是生态系统的开拓、生态系统的扩展、对生态系统的领导和自我更新或死亡。关键企业必须做到能开发比现有系统更有效的、新的首尾相接的价值创造系统、吸引更多的参与者并保持系统成员的多样性、处理各种内外部冲突、持续地为系统注入新的思想和创造新的机会等。
3.2商业生态系统的演化机制和评价体系吴建材提出商业生态系统的本质是协同进化,其演化机制是系统内成员通过功能耦合实现自组织进化,竞争和协同在进化过程中扮演着动力的关键作用。杜国柱、王娜、李爱玉等构建了自然生态系统的健康模型,并提出了商业生态系统的健壮性评价体系,认为所谓商业生态系统健康是指能高效将原材料转变为有生命的有机体,面对环境的干扰与冲击,能持久地生存下去,并随着时间的推移能创造出新的有价值的功能。
3.3基于商业生态系统理论视角研究地区经济和产业集群黄昕和潘军从商业生态系统物种多样性和关键物种等角度,提出我国汽车工业缺少成熟和有力的关键企业的观点,而且汽车工作处于长期封闭和孤立的状态,导致了汽车企业竞争力不强、配套不完善、产业链断裂等一系列问题;吴建材基于商业生态系统理论视角研究广州服装专业批发市场,提出专业批发市场已进入协同进化的时代,应从商业生态系统角度构建专业市场的核心竞争力。HaraldMahrer和RomanBrandtweiner运用商业生态系统理论分析奥地利国家电子商务产业现状,认为奥地利电子商务发展正处于商业生态系统的第二阶段。
3.4商业生态系统理论在多领域中的应用胡岗岚等从商业生态系统理论的视角研究我国电子商务产业的集群化现象,并给出了电子商务生态系统的定义,同时认为我国电子商务生态系统的演化发展过程包括开拓、扩展、协调、进化等四个阶段。张蓓运用商业生态系统理论研究我国零售业,提出建立健康零售业商业生态系统的思路,建议走协同进化的道路,建立共赢的商业社会。郭哲从商业生态系统理论的角度,提出构建无线城市的商业生态系统模型,并给出了三种发展战略,即网络核心型战略、支配主宰性战略和缝隙型战略。
4结语
1.1信息生态的内涵
信息生态学是信息科学与生态学交叉融合形成的一门交叉性学科,构成其理论的基础是生态学与信息科学理论基础的总和。由于信息科学的范围过于宽泛,信息生态这一理论的提出为其提供了一个理论框架。生态学系统的研究对象为多种生态要素在复杂的动态时空中发生极其复杂关联的生态系统。信息生态问题是人们在信息时代面临的一个重要且跨越多学科领域的复杂问题,越来越多的学者开始关注并积极投身信息生态的研究中,其研究内容涵盖信息生态系统、信息生态环境、信息生态平衡、信息生态危机、和谐信息社会等多主题,呈现出多级分层和不断演化的形态。目前学者们对信息生态学的研究包括对它的学科范围进行研究,以及对其中的关键要素的研究,例如:信息生态圈、信息生态链、信息生态位、信息生态系统以及信息生态因子、信息生态系统的演化规律等。信息生态系统是信息生态学的主要研究对象。信息生态具有多样性的特点,每个信息因子处于不同的信息位上,信息生态系统的复杂性为每一信息因子的存在提供了可能。信息生态具有协同演化的特性,同样在信息生态中新思想、新技术、新专业的涌现或者是信息人自身态度的变化也将影响信息生态的演化。
1.2信息生态系统要素
信息生态系统是信息自身与生命体及其周围环境相互联系相互作用的有机整体。狭义的信息生态研究发轫于本世纪中叶,当时它不包括人和社会环境的内容,仅局限于生物信息的产生、传递和接受等内容,如今广义的信息生态研究应包括人和社会环境的内容【1】。信息生态系统的要素特征决定其复杂性、多样性、系统性以及演化性的基本特征,且这些特征具有普适规律,所以本文将信息生态系统作为一个大的环境来分析其背景下的企业生态系统的结构特征及管理规律。
1.3企业生态系统
企业生态系统就是借用自然生态系统的概念,来解释企业组织内部及企业组织与环境之间的关系。企业组织不是孤立存在的,企业与生活在他周围的其他相关企业和组织相互联系相互作用,与其外部环境通过物质、能量、信息的交换,构成了一个相互影响、相互依赖、共同发展的统一体。企业不仅受到自然环境的限制,更重要的是受到变化越来越剧烈的社会环境的影响。企业本身是一个开放的系统,它不断地与其生态环境发生物质、能量、信息的交换,企业生态环境的复杂性使得企业与其环境的相互作用异常复杂;此外,企业生态系统中自然资源与社会资源的转化过程离不开人类的活动,企业生态系统受“人类活动”的影响相当显著,比如科学技术的进步、政策的变化、体制的改革等等都会使企业生态环境发生极大的变化【2】。对于企业外部来说,物质环境、经济环境、社会环境,是影响企业生存以及发展的重要信息因素。企业生态环境是指围绕生命主体、占据一定空间、构成生命主体存在的条件的各种物质实体和社会因素。除了物质、经济以及社会环境之外,企业的竞争对手也是影响企业发展的重要的外部环境因素,这也是企业在制定和确定自身核心竞争力和制定企业战略重要的参考因素【2】。企业生态系统是以企业为核心的,特别是拥有核心能力的主导企业,从其构成成员的紧密性和重要性的不同,可以将其划分为三个层次:核心生态系统、扩展生态系统、完整生态系统。核心生态系统主要包含主导企业及其供应商、分销商、顾客等要素:扩展生态系统是在核心生态系统包含这些要素的基础上加上供应商的供应商以及顾客的顾客要素;涵义最为全面的是完整的生态系统,他还包括政府组织、风险承担者、竞争机构以及外部宏观环境要素等等。对于企业内部环境来说,高度集成化的信息生态系统根据职能划分为驱动力(信息生产者),工作流为主线(信息传递者)将信息反馈到企业内部各部门或者企业外部的供应商(信息消费者),进一步进行信息处理工作,在企业内部每天处理业务的同时,会有大量的信息在企业信息管理系统中产生,形成大量的信息流在各部门或层级之间流转,从而推进工作流的进行,信息的产生、传递、消费都无时无刻不在发生。以目前较为发达的SAP系统为例,其中包含了生产计划(PP)、物料管理(MM)、销售管理(SD)、财务会计(FI)、管理会计(CO)、财产管理(AM),以上6个模块为企业运营的核心模块,另外还包含了:质量管理(QM)、项目管理(PM)、人事管理(HR)、信息管理(IS)、工作流(WF)、项目系统管理(PS)。SAP系统是高度集成化的企业管理软件和信息生态系统,支持多接口可与多种系统集成,内部有开放的代码编写环境,开发人员可以进入软件的底层,直接利用系统提供的计算机语言或者自定义表结构来满足不同的业务需求。由于企业内部的生态系统中的各个模块的紧密联系以及相互作用,形成了一个集采购、库存、生产、销售以及财务相互作用为一体的负责的企业生态系统,因此也决定了SAP系统的高度集成化,每一个业务模块从采购到库存以及生产相关的环节都在业务流程上有着相互影响和制约。在受到内因与外因的共同作用时,企业有可能在竞争的环境中经历共生发展、协同发展以及蜕变或者企业种群变动的变化。
2企业生态系统中的复杂网络
2.1企业生态系统的复杂性
企业生态系统是一个典型的复杂系统,它由种类繁多、数目庞大的企业以及复杂的企业生态环境相互作用而构成,更重要的是这一系统还包括最复杂的系统——人,由于人类的理性以及非理性更增加了企业生态系统的复杂性。经过总结学者们的研究成果,得出企业生态系统的复杂性主要表现为。
(1)演化性。
即系统由简单到复杂的进化特性,它是所有复杂系统得以产生和存在的根本原因。企业生态系统作为典型的复杂系统更表现出典型的演化特性。具有现代意义的企业诞生也就是最近200年的事。当时,企业的数目还不多,企业之间你死我活的生存竞争几乎没有,企业的雇员被当作会说话的机器只是简单地完成固定的工作,企业生态系统刚开始形成,整个系统相对来说是简单的。随着生产力的发展,各种类型的企业不断出现,企业雇员的素质不断提高,市场竞争日趋激烈,企业生态系统也逐渐由简单变得复杂起来。演化特性造成了企业生态系统的动态复杂性。
(2)理性与非理性。
虽然企业是企业生态系统研究中的基本单位,但是企业及其生态环境都少不了人类的参与,企业生态系统的结构、功能特性上必然要打上人类理性及非理性的烙印。一方面,在竞争性的企业生态系统之中,博奕者的理性(智慧、策略等)产生局部最优与全局最优的矛盾;另一方面,由于人类的情感、偏好、意志等非理性的存在使得企业生态系统的复杂性大大增加。
(3)自组织、自催化性。
企业生态系统的发展有明显的自组织及自催化现象,即企业生态系统由于系统内部的相互作用而不断进化。比如,企业之间的竞争所导致的企业之间以及企业与环境之间的协同进化。
(4)层次性与多样性。
企业生态系统是由大量的处于不同层次的组分相互作用构成的,首先企业本身就是一个复杂系统,它下面有不同的战略单元或部门,部门下面有各种不同的团队,而构成团队的又是世界上最复杂的系统——人。从宏观审视,企业之间可以建立企业联盟、企业的上下游可以构成企业生态链,相同性质的企业可以构成行业群落、同一地域的所有企业构成企业群落、企业群落与环境相互作用又构成区域企业生态系统,各个区域企业生态系统相互作用才构成完整的企业生态系统。企业生态系统中不同层次、不同组分之间的相互作用造成了企业生态系统的结构复杂性。
2.2信息生态系统中企业生态系统的复杂网络
企业生态系统中每一个信息子处在不同的生态位上,如果生态位重叠的部分较大则构成竞争关系,如果重叠的部分较小且依存程度较大的为共生关系,处于不同生态位上的信息子也有可能既是协同发展的关系也是共生关系。如果不同信息子之间的交叉程度较大则会形成较为复杂的网络,形成拓扑关系(一个节点有多条边)。在企业外部生态系统中,企业不仅受到自然环境的限制,更重要的是要受到变化越来越剧烈的社会环境的影响;企业对其环境的影响也比生物体对自然环境的影响大得多。企业本身是一个开放的系统,它不断地与其他生态环境发生物质、能量、信息的交换,企业生态环境的复杂性使得企业与其环境的相互作用异常复杂;此外,企业生态系统中自然资源与社会资源的转化过程离不开人类的活动,企业生态系统受“人类活动”的影响也相当的显著,例如科学技术的进步、政策的变化、体制的改革等等都会使企业生态环境发生极大的变化。在企业内部生态系统中,销售订单会直接指导生产计划,生产计划产生之后就会对物流需求计划提出要求从而引发采购行为,在采购收货的时候库存管理会被触发,同时收货的时候会产生发票校验以便财务对账使用。这一系列的业务活动产生于供应链上,且每一个活动可以作为一个信息子来看待,它们的关系是共生关系也是协同发展的关系,每一个信息子之间的信息链的断裂都会影响整个流程的正常进行。而当这些信息流在供应链上流转的同时,质量管理、项目管理、人力资源管理也同时在进行,这些信息子之间没有必然的共生关系但是却协同作用于整个供应链中。质量管理贯穿整个生产、物流、销售、服务等各个环节,帮助企业整合支离破碎的业务流程,其质量管理模块支持企业的质量管理需求;项目系统管理可提前拟定出计划,指导生产、备料以及采购优化流程管理,并且项目系统管理贯穿于整个计划实施的过程中,有监督管理的作用;人事管理,包括人力资源总体规划、员工招聘、员工培训、员工职业发展规划、考勤管理、薪资福利、员工绩效和员工关系等。
3企业生态系统复杂网络的系统动力学模型分析
3.1系统动力学相关理论及模型概述
系统动力学是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。构成系统动力学模型的基本元素包含“流”与“元素”。“流”分为“实体流”和“信息流”;“元素”包括“状态变量”,“速率”和“辅助变量”。系统动力学建模有3个重要组件:因果关系图、流图和方程式。因果反馈图描述变量之间的因果关系,是系统动力学的重要工具;流图帮助研究者用符号表达模型的复杂概念;系统动力学模型的结构主要由微分方程式所组成,每一个连接状态变量和速率的方程式即是一个微分方程式。系统动力学中以有限差分方程式来表示,再依时间步骤对各方程式求解,呈现出系统在各时间点的状态变化。
3.2企业生态系统的动力学模型分析
下文将利用系统动力学的因果关系模型图来分析企业生态系统的外部环境信息因子对其运行机制的影响,以及企业生态系统的内部各个核心模块中的信息因子的作用关系。反应了企业生态系统的外部环境对企业的影响,科技、市场需求以及政府和科学技术的支持都对企业生态系统的运行机制有着积极正面的影响。反应了企业生态系统内部信息因子的作用关系,形成了以生产和销售拉动需求的正负反馈因果关系图,每个箭头都有信息因子流入,被箭头指向越多的信息节点说明在企业生态系统内部的能级越高,它的变化会带来联动的影响。无论在企业生态系统的内部还是外部,各信息因子间都有相互作用的关系,一部分是制约一部分是促进,从而形成了竞争和互利共生的关系。在每一个因果关系图中信息流都顺着箭头的方向进行流转,为了保证信息能顺利且准确的传递到下游,必须控制好每对信息因子之间的信息链有无断裂或者不对称的现象。而且可以根据关系图直观的看出哪些因子是处于信息生态链的上游,哪些信息因子处于信息生态链的下游。在做出正确的分类和判断以及影响分析之后,管理决策者可以划分其管理的优先级,并合理地安排人力物力于此因子上发生作用。并且在容易发生信息生态链断裂的区域重点监控防御以便适当降低管理风险。
4结语
1.1数据来源
本研究所用数据主要来自于连云港海州湾渔业生态修复水域2003年度5月(春季)、8月(夏季)和10月(秋季)渔业资源大面调查,其中游泳生物调查使用有翼单囊拖网,底栖生物调查使用阿氏拖网,浮游生物调查使用浅海Ⅰ、Ⅱ和Ⅲ浮游生物网。样品鉴定和分析按照《海洋调查规范》(GB/T12763.6-2007)执行。调查区域34°52.00'~34°58.00'N、119°21.150'~119°34.800'E。
1.2Ecopath模型建立
1.2.1功能组划分
构建模型所需功能组通常既可以选择生态学或分类学地位相似物种的集合,也可选择单个物种或单个物种某个生长阶段(幼体或成体)的集合,而且一些具有重要经济价值或生态功能的物种,也可单独列为一个功能组。例如,林群等在研究渤海生态系统时将鳀鱼(Engraulisjaponi-cus)、小黄鱼(Larimichthyspolyactis)口虾蛄(Ora-tosquillaoratoria)等单独列为功能组。段丽杰等在研究珠江口近海生态系统时将具有重要经济价值的竹筴鱼(Trachurusjapenicus)、蓝圆鰺(Decapterusmaruadsi)、刺鲳(Psenopsisanomala)列为独立功能组;吴忠鑫等在研究荣成俚岛人工鱼礁区生态系统时将生物量较多且生态功能重要的许氏平鮋(SebastesschlegeliHigendorf)、大泷六线鱼(Hexagrammosotakii),刺参(OplopanaxelatusNa-kai)等单独列为功能组;李云凯等在研究太湖生态系统时将青鱼(piceus)、鲢鱼(Hypophthal-michthysmolitrix)、鲫鱼(Carassiusauratus)、鳙鱼(Hypophthalmichthysnobilis)、鲤鱼(Cyprinuscarpio)等在太湖中具有代表性的鱼种单独研究。根据对象生物的生态位,习性及食性特点,海州湾渔业生态修复水域海洋生态系统的能量流动模型共划分成14个功能组。分别为:碎屑、浮游植物、浮游动物、头足类、虾类、蟹类、软体类、棘皮类、杂食性鱼类、口虾蛄、小黄鱼、鯷、肉食性鱼类(黄鮟鱇),草食性鱼类等。
1.2.2参数确定
功能组的生物量通过现场调查计算得出,单位与能流单位相同(湿重,t/km2/a)。由于部分功能组是由多个物种组成,P/B(生产量/生物量)与Q/B(消费量/生物量)难以得到,因而参考纬度和生态系统特征与海州湾大体相同的渤海中的功能组,并参考Fishbase数据库中的数据来确定P/B与Q/B的值。功能组的食物组成主要来自于采样鱼类的胃含物分析和相关文献数据。
1.2.3模型调试
为了使模型保持平衡,需要对模型进行多次调试,最终使得各功能组的EE(生态营养效率,EcotrophicEfficiency)≤1。当初次输入数据,运行模型后,总会有一些功能组的EE>1(不平衡功能组),通过反复调整不平衡功能组各项参数,直至所有功能组的EE≤1,模型保持平衡。
2结果与讨论
2.1连云港海州湾渔业生态修复水域生态系统
Ecopath模型通过对模型的不断调试,得出连云港海州湾渔业生态修复水域生态系统Ecopath模型。
2.2海州湾渔业生态修复水域生态系统的营养级结构
低营养级能流在系统中占较大比例,营养级I流向碎屑的能流为10144.00t/km2/a,占总流入碎屑量的53.40%。位于营养级I的功能组为碎屑和浮游植物,碎屑不是有机体,没有呼吸作用,浮游植物的呼吸量没有进入系统内部循环利用,因此,营养级I的呼吸量为0。对于营养级Ⅱ,其输出量为0,说明处于营养级Ⅱ的功能组(浮游动物)的能量没有流到系统外,全部在系统内循环利用。对于营养级Ⅴ和VI,其各项能量均占总能量的极小部分,如生产量仅占总量的0.03%,说明营养级Ⅴ和VI的功能组能量被系统利用极少。因此,海州湾渔业生态修复水域能流主要在I~IV营养级之间流动。
2.3各功能组间的混合营养效应
连云港海州湾渔业生态修复水域各功能组间的混合营养效应分析,图中白点为正效应,表明对应功能组的生物量会随该功能组生物量的增加而增加;黑点为负效应,表现为抑制作用。从图中可以看出,碎屑、浮游植物作为被捕食者(饵料生物),对大多数功能组有积极效应。草食性鱼类和杂食性鱼类之间的负效应较为明显,原因可能是二者存在食物间的竞争。此外,生态系统受捕捞的负面影响也比较显著,渔业对营养级较高的肉食性鱼类、杂食性鱼类以及受底拖网作业方式影响较大的虾类、蟹类功能组的负效应显著。
2.4营养级间的能量转换效率
海州湾渔业生态修复水域能量主要在6个营养级间流动。初级生产者到营养级II的转化效率为9.50%,略高于来自碎屑的转化效率,为6.90%。初级生产者转化效率为14.20%,碎屑转化效率为13.60%,总的能量转化效率为13.80%,高于林德曼10.00%转换效率。在能量流动比例中,来源于碎屑的占46.00%,来源于初级生产者的占54.00%。因此,该水域生态系统能量通道以牧食食物链为主,总的能量转化效率高于林德曼所估计的水体平均能量转化效率,表明该系统比较有活力。
2.5生态特征参数分析
海州湾渔业生态修复水域生态系统的总体特征参数。海州湾渔业生态修复水域系统总流量为21946.70t/km2/a,系统的净初级生产力为9500.00t/km2/a。连接指数是系统中各物种间的连接紧密程度,值越大表明连接越紧密。系统杂食指数是消费者所捕食种群的营养级的方差,值越小表明消费者捕食的物种越少。海州湾渔业生态修复水域连接指数和系统杂食指数分别为0.27和0.21。表明海州湾渔业生态修复水域生态系统中各物种连接不够紧密,捕食关系不够复杂,系统还不够成熟。
2.6海州湾渔业生态修复水域生态系统的能量通道
可以看出,该水域生态系统的能量流动途径有两条:①牧食食物链:浮游植物—>浮游动物—>软体类—>鯷—>小黄鱼—>肉食性鱼类。②碎屑食物链:再循环有机物—>碎屑—>浮游动物—>软体类—>鯷—>小黄鱼—>肉食性鱼类。可以看出,浮游动物在海州湾渔业生态修复水域生态系统的能量流动中有至关重要的作用。该水域浮游动物优势种类主要有桡足类、介形类、多毛类和毛颚类,这些种类不仅是浮游植物的摄食者,还是软体类,鯷及多种鱼类幼体的主要饵料。
2.7能量流动效率分析
海州湾渔业生态修复水域生态系统的能量流动效率为13.80%,来自初级生产者的为14.20%,来自碎屑的为13.60%,高于林德曼估算的转化率(即水生生态系统转化效率平均为10.00%),但低于中国近海水域生态效率,如闽南-台湾浅滩和厦门海域16.10%,渤海16.20%等。能量转化效率较高的主要原因:其一可能是该水域浮游动植物较多,生产力较高;其二是可能由于调查数据尚不够充分,部分数据参考同纬度其他海域生态系统模型。与其它同纬度或特征相似的生态系统相比,连云港海州湾渔业生态修复水域生态态统能量流处于上游水平,低于发育程度较高的加拉帕格斯群岛。TPP/TR(总初级生产力/总呼吸量)是反映系统成熟度状况的重要参数,一个成熟生态系统没有多余的生产量再利用,TPP/TR值应接近于1。但在生态系统发育的早期,总初级生产力超过系统总呼吸量,其值大于1。连云港海州湾渔业生态修复水域的2003年TPP/TR值为4.51,表明该水域生态系统很不成熟。成熟系统的另一特征是物质再循环的比例较高,能流的循环路径较长。荣成俚岛人工鱼礁区的FCI(循环指数)为0.05,FML(平均能流路径)为2.62;枸杞岛海藻场的FML为2.95。本模型中FCI为0.03、FML为2.22,表明系统生产力中贡献给物质和能量再循环的比例较低,系统能量在系统中流动的路径较短。连接指数(CI)是系统中各物种间的连接紧密程度,值越大表明连接越紧密,系统杂食指数(SOI)是消费者所捕食种群的营养级的方差,值越小表明消费者捕食的物种越少。CI和SOI的值越大,系统越成熟。海州湾渔业生态修复水域生态系统的CI为0.27,SOI为0.21,表明该系统的成熟度和稳定性较低,食物网结构相对单一。综上,连云港海州湾渔业生态修复水域生态系统的成熟度和稳定性较低,是一个正处于不稳定状态的生态系统。
2.8模型总体质量评价
Morissette对全球150个Ecopath模型的质量进行评价,结果显示指数在0.16~0.68,本研究构建的模型的指数为0.41,表明该模型输入数据的可靠性较好,模型的可信度较高但在模型的构建过程中仍然存在诸多生态问题考虑不充分,如模型包含的部分数据来自不同月份、功能组还需进一步细化,模型部分功能组的胃含物分析和鉴定仍存在一定困难,部分功能组胃含物数据参考邻近的渤海生态系统。
3结论
1.1祁连山地区概况
祁连山位于青藏、蒙新、黄土高原交汇处,该地区海拔在3000~6000m,有诸多山峰,由山脉和宽盆地组成。祁连山地区的冰川地貌特征较为明显。该地区自下而上为:浅山荒漠草原、浅山干草原、中山森林草原、亚高山灌丛草甸、高山冰雪植被。该区太阳辐射总量较大、日照时间相对较短、降水充裕、气温适中十分利于植被的生长。
1.2林业资源现状
祁连山地区的森林资源为天然林,从甘肃省林业厅的统计数据来看,建国初期祁连山北山地区的天然林仅12.4万hm2,到20世纪80年代,天然林面积有所下降,约为11.6万hm2,随着保护力度的逐渐加强,到2000年该地区北山的天然林面积已经达到19.1万hm2,到2010年该区北山的林地面积达到20.55万hm2,祁连山森林在20世纪90年代就被国务院批准为国家重点水源涵养林。
2对生态系统的保护作用
2.1能够涵养水源、保育土壤,防止水土流失
受祁连山地区森林资源的影响,降水会随着森林的树冠和树根逐步渗入到土壤当中,减少地表的径流量,使得一部分降水被土壤吸收,一部分降水形成地表径流流失,而被土壤吸收的这一过程就实现了涵养水源的作用。受树冠和树根的影响,减少了雨水对地表的直接冲刷,森林地区地表通常有凋落物能够保护地表土壤免受雨水侵蚀,从而达到防治水土流失的目的。森林地表都还有较厚的腐殖质能够有效提高土壤中的养分,实现保育土壤的目的。
2.2能够调节祁连山地区的气候
森林往往能够形成一个稳定的森林生态系统,森林吸收大量的二氧化碳,释放大量的氧气,可以达到净化空气的目的,而且这一过程中还伴随着水蒸气的发生,往往能够保持祁连山地区相对湿润的气候,也是受这一原理影响,森林地区多会伴有降雨发生。因此,祁连山地区的林业资源在调节气候、净化空气、保持相对湿润的气候方面发挥了很大的作用。
2.3减少该地区各类污染
在喧嚣的城市中,噪音污染已经成为一种新的污染,森林能够有效的防止噪声污染,降低分贝;目前每年排放的二氧化碳量巨大,据报道,全球现在以每10a0.5℃的速度在变暖,而森林能够吸收二氧化碳,有效的缓减温室效应;臭氧空洞越来越严重,而森林能够吸收二氧化氮,减少由二氧化氮反映引起的臭氧消耗,因此能够有效的缓减祁连山地区的臭氧消耗量;森林还能吸收其他排放出来的废气,诸如二氧化硫等,从而减少污染净化空气。
3保护祁连山林业资源的对策
3.1加强林业管理和林业执法防止乱砍滥伐
护林员应该加强对该地区林业资源的巡护,以便能够及时的发现林木中的病虫害以及火灾等自然灾害做到即时防控;林业部门应该加大对林业的执法力度,发现乱砍滥伐的应该严肃处理。
3.2利用高科技设施防止火灾发生
目前数字防火系统已经在很多林区开始广泛的使用,数字防火系统包含地理信息系统、视频指挥系统、定位跟踪系统、火灾现场实时传输系统以及林火瞭望监测系统。该系统具有即时、迅速、可靠的特点,而且可以快速的识别出火源,一旦发生火灾就可以利用指挥系统指挥就近的人快速扑灭火源。
3.3加大宣传、呼吁周边百姓自发保护森林
政府应当加大宣传,让周边群众意识到“保护森林资源、人人有责”,呼吁周边的居民加强对森林尤其是天然林的保护,周边居民同林管局的工作人员建立密切的合作关系,实现社区共管,一旦发现滥砍滥伐现象或森林起火现象立即向林管局报告,从而减少森林的毁坏。
4结束语