时间:2022-11-09 02:41:33
序论:在您撰写自动控制论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
DCS系统在很长时间就已经得到了相关方面的普及工作,而且其在实际中的应用效果也是非常好的,可以说在各个领域的自动化控制技术领域都有其不可取代的地位。DCS系统就是集散的控制系统,系统的核心思想是通过分散控制,进而进行集中操作的指导方针。DCS系统主要是由上位系统还有下位系统构成,上位系统应用的是工业控制计算机,现场的数据,存储,还有报警处理,打印以及控制参数的设定等,都是运用组态软件来完成实时的显示工作。在实际的作业工作中,通过借助于工业控制计算机,然后对上位系统进行全方式的控制,这方面的内容主要包括应用WinCC组态软件,实现对现场数据进行的实时的显示,处理,还有对各种参数进行的设定,以及对所有数据进行存储的工作,对一些可能出现问题的数据,实现自动报警,还有最终数据的输出功能等。而下位系统是由PLC构成的,同时还要连接现场的一些设备。在上下位系统之间,通过应用Ethernet来实现通讯,其根本目的就是要满足对数据的实时监控。就目前而言,基础的自动化控制系统组件主要有S7-300系列的PLC硬件,而系统平台的主要界面是Windows2010,其监控软件是WINCCV6.0,相应的编程软件是STEP7V5.3。
2针对于DCS系统的锅炉系统自动化控制系统的整体方案
2.1控制任务的运行方法。
(1)自动调节
通过对锅炉运行参数进行自动的调整,这样来适应外界的负荷,还有工质参数的要求,同时还能让锅炉保持在比较经济的工作状况下运行。
(2)程序控制
在程序控制方面而言,比如引风机,鼓风机,还有炉排的启动顺序等,它们控制开关的启、停以及运行等动作,通过先进的技术进行自动化的控制。
(3)保护联锁
如果是从保护联锁方面而言,比如锅炉在运行的过程中,这个系统配置对水位是否正常,以及压力是否正常等情况能够进行报警的系统功能,同时还包括那么针对保护作用的,对压力以及水位异常情况下的连锁保护功能。建立电气联锁保护系统,可以有效的预防和杜绝在设备关闭过程中的操作性失误。
2.2控制系统本身的功能
(1)控制燃烧系统
燃烧系统的控制的目的就是确保蒸汽管内的压力稳定,与此同时还要保证有足够的燃烧效率。所以为了平衡这二者的关系,操作人员在调节锅炉负荷以及燃料的时候,就需要及时的对送风,还有引风量进行有效的调节和改变。如果负荷增减的度量比较大,还可以选取调节措施为停开数层或某一层。
(2)锅炉送风自动控制系统
锅炉送风的主要目的是让投入的燃料,在炉膛燃烧的时候,能够自动的投入合适的风量,进而保证锅炉的原料的有效燃烧,从而来提高锅炉的工作效率。这里需要涉及到控制参数,而对送风的控制参数而言,主要是送风参数,还有煤气的压力参数,这两个参数可以让锅炉的热效率得到保证,通过借助不断的对送风机挡板开度的大小进行调整,进而来实现送风压力的自动调节的目的。如果有两台送风机同时的在运行,就应该并列其中的一个,而对另一个的送风机的挡板进行调节。
(3)对炉膛内负压力的调节
平衡量和引风量的目标,是当锅炉的运行处于稳定的状态时,要保持它的为微负压,做到这一点,系统就可以有效的并且安全的运行。炉膛中的负压自动控制机制,是通过调节引风机入口的风门开度来实现的,这个过程中,一定要保持炉膛内的负压在-20到10Pa的微负压状态之间,进而就可以保证锅炉安全的燃烧。
(4)对蒸汽温度的调节
在蒸汽温度的调节方面,现在基本上都是选用自制的冷凝水喷减温装置。它的工作原理是按照蒸汽的出口处,对温度测量的结果来判断的,通过自动打开调节阀,然后对温度进行有效的调整,以此来保证温度处于正常合理的范围之内,也就是在430到450℃之间。这些就是DCS系统的锅炉系统自动化控制系统的整体方案,这个方案的有效落实,在实际的生产中,不仅能够给相关的操作人员以很大的方便性,而且还能有效的保障各个行业的生产加工工作,尤其是在对燃烧的锅炉的保护方面,只要按部就班的执行每一项的工作内容,而不是偷工减料的落实工作,锅炉在工作方面是不会出现比较严重的事故的,所以相关的领导和技术人员对一线的操作人员,一定要做好相关的培训工作,进而保证DCS控制系统在实际的生产中发挥其最大的作用,给企业创造出更大的价值。
3针对于DCS控制系统的控制联锁保护技术
3.1锅炉的保护设计和技术应用
为了安全的监控炉膛,更好的保证稳定的锅炉燃烧情况,所以就需要控制好DCS的软硬件。在运行的时候,被输送到燃烧炉跟前的高炉煤气,还有焦炉煤气分别从锅炉的燃烧器,送入到炉膛内部而进行燃烧过程,煤气燃烧所需要的空气是由鼓风机提供给,而鼓风机在工作的过程中,先要把冷空气送到空气的预热器内,然后通过加热后,再让热风道把热空气送进炉膛内。如果煤气的压力过低,或者鼓风的引风因为其他的故障而停止了工作,锅炉的内部就会发生回火而造成爆炸的事故,对锅炉中的所有气动阀来说,在切断层面上都必须要进行连锁控制,这样才能保证在出现异常的时候,所有的安全气阀都可以被自动的连锁系统给切断,也就是说,点火煤气压力控制点火小的气动阀,而喷气自动阀,还有高炉煤气压力控制高炉的大喷气动阀,在它们之间实现连锁和切断,这对于所有的气动阀来讲,如果让引风机以及鼓风机进行全部的控制,那么一旦出现鼓风,引风机停止作业的情况,就会造成所有的气动阀都会被快速的连锁切断。
3.2水位连锁保护技术的应用
针对于DCS控制系统方面,其在处理水位变化方面能够实现非常好的自动化控制。这个系统内设置了因压力的大小而导致水位偏高或偏低的声光报警装置,还有因水位偏低而停炉热工连锁保护保护功能。尤其是气泡水位的控制设计方案,其可以根据给水的流量,还有气泡液位和蒸汽的流量对给水阀进行合理化的调节,进而保护了锅炉水位的稳定性。
4总结
由于“自动控制基础”课程比较抽象,不同于一般的专业课,在授课过程中,学生普遍反映学习比较吃力,不知道这些知识学了用在什么地方,某些学生有“自动控制基础课程难学又没用”的想法,大部分学生的学习目的不明确,上课的注意力很容易不集中,传统教学方法严重影响学生的学习积极性。针对这种情况以及学生对应的偏船舶专业背景,在课堂教学中引入船舶中大量的控制系统应用的实例,如把船舶柴油机气缸冷却水温度控制系统、船舶燃油黏度控制系统、船用辅锅炉的水位自动控制系统、主机遥控系统和船舶火灾监控系统自动控制等等,穿插到本门课程的教学中。这种教学方法通俗易懂,学生能很快接受,从“要我学”转变为“我要学”,课下经常有学生请教实例中深层次的问题,学生普遍反映喜欢这种实例讲解。同时在教学中注意采用多种教学手段与方法,上课并不是简单地“念”多媒体课件,对于重要的数学推理以及公式,还是在黑板上进行推导,现代教学手段与传统教学方法有机结合,可以使得课程教学更加科学;课上多用启发式提问,增加学生对知识点的感性认识,让学生积极思考和分析,然后积极组织学生参与课堂讨论,最后教师加以总结。师生之间形成良好的互动,课堂教学氛围比较活跃,很大程度上调动了学生对学习的兴趣。
二、注重Matlab软件
在教学中的应用Matlab软件在欧美国家早在20世纪90年代就正式引入教学中,如今Matlab已经成为线性代数、控制理论、数理统计和数字信号处理等课程的基本教学工具,成为欧美国家大学生必须掌握的基本技能。自动控制基础课程理论复杂,公式也比较多,Matlab控制系统工具箱可以很好地处理以传递函数为主要特征的经典控制问题。将Matlab引入课堂教学中,不但可以提高教学质量,也能吸引学生的学习兴趣。例如时域分析中,系统对各种典型输入信号的响应传统上都是利用拉普拉斯变换法求解出系统输出的拉普拉斯变换,然后拉普拉斯逆变换得到输出的时间函数。由于江苏科技大学能源与动力工程专业学生以前没有学过复变函数与积分变换这类课程,加之过多的数学变换干扰了学生对时域分析的理解,特别是二阶振荡系统,得到的系统输出方程比较复杂,学生难以理解。而且课堂教学中做出准确的曲线也比较困难。在Matlab环境下,可以很方便地输入相应的参数,从而得到相应的响应曲线。再通过改变自然频率和阻尼比的大小,可以很直观地观察到这两个参数对时间响应曲线的影响。整个过程清晰明了,教学形象生动,复杂抽象理论的概念得以具体图形化,学生对知识点易于掌握,对课程的兴趣也得到提升。另外利用此软件在频率特性的Nyquist图、Bode图的绘制与分析以及系统的校正等传统教学难点的教学中也收到了很好的教学效果。课下也鼓励学生学习Matlab软件,建议课后部分作业用Matlab来完成。
三、加强实验教学课程的实践
教学环节在江苏科技大学是独立授课实验,授课教师与实验教师的沟通尤为重要。一方面,目前实验安排上尽量压缩讲解时间,减少演示性的实验项目,相关的理论知识学完后紧跟实验,增多设计性、综合性的开放实验内容,强化学生对基础知识的理解,培养学生的自主学习能力,确保学生不但能做出结果,还能知道为什么会有这样的结果;另一方面在Matlab环境下开展计算机辅助虚拟教学实验,“虚实”两种手段有机结合。对于动手能力强的学生,利用实验室现有的设备,引导学生自己设计实验项目,能力非常突出的,吸收到学校相关本科生创新计划的研究小组。充分发挥学生的学习主动性和创造性,为毕业后的工作或深造打下基础。
四、改革考核方式
1.1集成自动控制
集成自动控制系统是我国机械自动化工程当中是十分重要的一项。而集成化自动控制系统就是保留原有的信息技术,然后加以修改,取其精华,去其糟粕,使机械自动化系统变得更加完善。集成化自动控制系统能将原有的信息技术和与生产相关的信息糅合起来,不仅使得机械工程中的集中工程得到了加强,还将为械工程的生产与发展拓展到了更广阔的领域。计算机技术是机械自动控制系统的基础,而计算机技术在不断的发展,集成自动美国控制系统得到了多方面工程制造的认可,深入到了各个领域。同时,集成自动控制系统也在计算机技术的更新下得到了完善与提高。
1.2柔性自动控制系统
机械自动控制系统不能够保持原有的自动化成分,需要不断的更新研发与创造。而柔性自动控制系统就是新发展的一项自动技术,它不仅包含了其他自动化控制系统的特性,能够自动化生产,还能够在生产中智能化。在机械工程不断发展的同时,柔性自动控制系统已经成为了其中重要的组成部分。在机械工程的发展与应用中,柔性自动控制系统将信息技术、现代化机械生产技术与先进的计算机信息化设备进行结合,利用数控技术进行生产,这样的科学生产方式使得机械制造不断进步。
1.3智能自动控制系统的应用
所谓智能自动控制系统,就是在人工技术与计算机网络技术的共同作用下,对机械工程中的任意一个过程进行模拟和控制,让机器变得人性化,让机械自动控制系统工作时能够与人的大脑相类似,能够收集数据和采集信息。智能自动控制系统有效的结合了人工智能技术和机械工作的过程,这样,不仅使得生产效率大大提高,生产过程更易控制,还节省了人力,创造了更大的经济效益。
2自动控制系统的发展前景
未来的科技技术会比现在更加发达,而每一个国家和地区的经济水平都在不断发生着变化,我们国家的发展和经济水平也都在不断的提高。这些都离不开机械工程,而自动控制系统是机械工程的重要组成部分,只有自动控制工程不断的更新发展,机械工程才能够不断的创新,变得越来越科技化,才能呢个拓展到更多的领域。在自动控制系统在网络信息技术不断发展的背景下,在机械工程的应用中将实现先进的网络化发展,并通过网络的传播,迅速渗入到各个行业中。当今社会经济的发展更注重的可持续性,无论多啊么先进的自动控制系统,在生产生活中都应该更注重环保和节约。在生产自动化控制装置时,应该以环保为首要考虑,节约能源,这样才能够可持续发展。
3结语
关键词:自动控制风机盘管变风量系统制冷装置新风机组恒温控制器电动阀
一、工程概况:
本空调工程全部采用吊顶暗装风机盘管加独立新风系统。室内风机盘管承担全部的室内冷负荷和湿负荷,新风机组把引入的室外新风处理到室内焓值,再按需求分配到各个房间。按舒适性空调设计,采用露点送风。系统冷热源选用风冷式空气源热泵,安置于天台上。空调水系统采用一次泵定水量系统,双管制,闭式循环。系统主机采用远程控制,各房间的风机盘管可单独控制调节。
二、空气房间温度自动控制是通过接通或断开电加热器,以增加或减少精加热器的热量,而改变送风温度来实现的。
空调温度自动控制系统常用的改变送风温度方法有:控制加热空气的电加热器,空气加热器(介质为热水或蒸汽)的加热量或改变一、二次回风比等。室温控制规律有位式、比例、比例积分、比例积分微分以及带补偿与否等几种。设计时应根据室温允许波动范围大小的要求,被控制的调节机构及设备形式,选配测温传感器、温度调节器及执行器,组成温度自动控制系统。
(1)控制电加热器的功率
控制电加热器的功率来控制室温的系统,其原理图及方框图见下
①是室温位式控制方案,由测温传感器TN,位式温度调节器TNC,及电接触器JS组成。当室温偏离设定值时,调节器TNC输出通断指令的电信号,使电接触器闭合或断开,以控制电加热器开或停,改变送风温度,达到控制室温的目的
②是室温PID控制方案,由测温传感器TN,PID温度调节器TNC及可控硅电压调整器ZK组成,可实现室温PID控制。
(2)控制空气加热器的热交换能力
控制进入空气加热器热媒流量的室温控制系统及其原理如下:
该方案是由测温传感器TN,温度调节器TNC,通断仪ZJ及直通或三通调节阀组成。当室温偏离设定值时,调节器输出偏差指令信号,控制调节阀开大或关小,改变进入空气热交换器的蒸汽量或热水量,从而改变送风温度,达到控制室温的目的。
(3)制进入空气加热器的热水温度
该温控方案组成与上面相同,不同的是控制三通阀来改变进入空气加热器的水温,改变热交换能力,达到控制室温的目的。
三、房间空气相对湿度自动控制的方法
空调房间温湿度控制:
空调房间温湿度的干扰因素的多样性,气候变化的多工况性以及房间存在的较大的热惯性等因素使得利用单回路直接控制房间温湿度的方法难以达到满意的调节效果。因此,应该另选有效的方法。针对空调房间的热特性,采用串级调节较适宜。其调节框图如图所示
室温调节器用于克服维护结构传热,室内热源散热引起的室温干扰。室温调节器根据房间内实际温度与设定温度的偏差调整送风温度的设定值。送风温度调节器则用来控制送风温度。这一环节主要克服在不同的季节,新风、回风混合比的变化引起的对换热器的出口状态干扰。使其在进入房间前受到一定的抑制,减少对室内状态的影响。采用串级调节后,还能改变对象的时间特性,提高系统的控制质量。
四、风机盘管空调系统的自动控制
(一)温控器
(1)风机盘管宜采用温控器控制电动水阀,手动控制风机三速的控制方式。风机启停与电动水阀连锁。
(2)冬夏季均运行的风机盘管,其温控器应有冬夏转换措施。一般以各温控器独自设置冬夏转换开关为好。
(二)节能钥匙
(1)房间设有节能钥匙系统时,风机盘管宜与其连锁以节能。
(2)当要求不高时,可采用插、拔钥匙使风机盘管启动或断电停转的方式。使用要求较高时,可增设一个温度开关。
(三)定流量水系统
风机盘管定流量水系统自控方式较简单易行,但节能效果没有变流量自控方式好。
五、风机盘管的定流量水系统自动控制
该工程使用定流量二管制,其风机盘管机组的控制通常采用两种方式。
(1)三速开关手控的二管制定流量系统
采用二管制水系统时,表面冷却器中的水是常通的。水量依靠阀门的一次性调整,而室温的高低是由手动选择风机的三档转速来实现的。
(2)温控器加三速开关的二管制定流量水系统
采用这种控制的水系统时,表面冷却器中的水是常通的,水量依靠阀门一次性调整。室内温度控制器控制风机启停,而手动三档开关调节风机的转速。
温控器选择AFT06*系列即可满足要求。该系列是带浸入式套管的。
六、变风量系统的监控
变风量系统的基本思想是当室内空调负荷改变以及室内空气参数设定值变化时,自动调节空调系统送入房间的送风量,使通过空气送入房间的负荷与房间的实际负荷相匹配,以满足室内人员的舒适要求或工艺生产要求。同时送风量的调节可以最大限度的减少风机的动力,节约运行能耗。
除了节能的优势外,VAV系统还有以下特点:(1)能实现局部区域的灵活控制,可根据负荷变化或个人舒适度要求调节。(2)由于能自动调节送入各房间的冷量,系统内各用户可以按实际需要配置冷量,考虑各房间的同时使用系数和负荷分布,系统冷源配置可以减少20%~30%左右,设备投资相应较大减少。(3)室内无过冷过热现象。
该系统采用单风管再加热VAV空调系统,其原理和控制系统图如下:
七、空调用制冷装置的自动控制
1、蒸发器的自动控制
空调用制冷装置系统的蒸发器和冷凝器温度的自动控制如图所示
空调负荷是经常变化的,因此,要求制冷装置的制冷量也要相应地变化。而制冷量的变化,就是循环的制冷剂流量的变化,所以需要对蒸发器的供液量进行调节,实现对载冷剂即被冷却物质的温度控制。空调用制冷装置的中常用的供液量自动控制的设备是热力膨胀阀。
热力膨胀阀的一种直接作用式调节阀,安装在蒸发器入口管上,感温包安装在蒸发器的出口管上。DV1和DV2是电磁阀,压缩机停时,电磁阀立即关闭,切断冷凝器至蒸发器的供液。
2、冷凝器的自动控制
在制冷装置上通常用冷却水量调节阀来调节冷凝温度。冷却水量调节阀是一种直接作用式调节阀,安装在冷凝器的冷却水进水管上,它的压力测量温包安装在压缩机的排气端,或冷凝器的制冷剂入口端,以感受Pl的变化。
3、制冷装置的自动保护
为了保证制冷装置的安全运行,在制冷系统中常有一些自动保护器件。制冷系统常用的自动保护包括排气压力保护、吸气压力保护、减压保护、断水保护、冷冻水防冻保护等。其系统图如下:
(一)排气与吸气压力自动保护
在制冷设备中设置了安全阀,还使用压力控制器来控制排气压力。当排气压力超过设定值时,压力控制器立即切断压缩机电动机电源,起高压保护作用;控制吸气压力的采用压力控制器PxS。它对吸气压力有保护作用。
(二)油压的自动保护
在制冷压缩机运转过程中,它的运动部件会摩擦生热。为了防止部件因发热而变形而发生事故,必须不断供给一定压力的油。油压控制器是一个压差控制器,用它可以实现制冷装置油压的自动保护。
(三)断水自动保护
为了保证压缩机的安全,在压缩机水套出水口和冷凝器出水口,装设了断水保护装置。该装置是由测量冷凝器出水口水的电阻的两个电极,配以晶体管控制电路的水流控制器SLS及继电器所组成。
(四)冻水防冻自动保护
在制冷装置运行中,蒸发器中冷冻水温度过低,容易发生冻结影响压缩机的正常运行,因此设置了冷冻水防冻自动保护系统。该系统是在蒸发器出口端安装了温度控制器TfS,当冷冻水出口处温度降至较低时,温度控制器使中间继电器断开,压缩机也就停止运转;在压缩机停转后,若蒸发器冷冻水温度回升到某一温度时,温度控制器使中间继电器接通,冷冻水泵和冷却水泵就重新启动,而压缩机也恢复运转。
4、水量调节阀的选择:
根据系统水管管径尺寸为:DN25DN32DN50三种,选择相应阀门口径的电动调节阀。结果如下:(品牌:丹佛斯)
阀门口径KV值经过阀们的流量(m^3/h)
压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)
0.20.250.30.350.40.450.50.550.6
DN25104.475.005.485.926.326.717.077.427.75
DN32167.168.008.769.4710.1210.7311.3111.8712.39
DN504017.8920.0021.9123.6625.3026.8328.2829.6630.98
二通阀选择:DN25Kvs=10m^3/h编号:065Z3420法兰连接VL2(PN6)
065B1725法兰连接VF2(PN16)
065B1525法兰连接VFS2(PN25)
DN32Kvs=16m^3/h编号:065Z3421法兰连接VL2(PN6)
065B1732法兰连接VF2(PN16)
065B1532法兰连接VFS2(PN25)
DN50Kvs=40m^3/h编号:065Z3423法兰连接VL2(PN6)
065B1750法兰连接VF2(PN16)
065B1550法兰连接VFS2(PN25)
三通阀选择:DN25Kvs=10m^3/h编号:内螺纹:065B1425外螺纹:065B1325
法兰连接VF3,VL3
DN32Kvs=16m^3/h编号:内螺纹:065B1432外螺纹:065B1332
DN50Kvs=40m^3/h编号:内螺纹:065B1450外螺纹:065B1350
模拟量控制驱动器:AME15,AME16,AME25,AME35
AME电子驱动器用在DN50以下的VRB,VRG,VF,VL,VFS2,VEF2阀门。该驱动器自动适应行程到阀的终端位置以减少调试时间。电源电压:24V~。适配器编号:065Z7548,介质温度超过150℃。阀杆加热器,用于DN15~DN50的阀门,编号是065B2171。
手动平衡阀:MSV-C该阀用于平衡制冷、供热和生活用水系统的流量。其特点有:固定的测量孔板;带有2件针式测量接头;手轮具有关断功能,一圈360度均可读数;数字刻度指示,并具有锁定功能;固定孔板测量精度是+-5%,MSV-C为内螺纹。
八、风机盘管系统的监控
风机盘管系统的控制通常包括风机转速控制和室内温度控制两部分。
1、风机盘管系统的监控功能
(1)室内温度测量;(2)冷、热水阀开关控制;(3)风机变速及启停控制
其监控原理图如图
九、新风机组的监控
新风机组通常与风机盘管配合进行使用,主要是为各房间提供一定的新鲜空气,满足人员卫生要求。其基本监控功能有:(1)监测功能检查风机电机的工作状态,确定是处于开或关;检测风机电机的电流是否过载;测量风机出口处的空气温湿度,以了解机组是否已将新风处理到要求的状态;测量空气过滤器两侧的压差,以了解过滤器是否要求清洗;检查新风阀状态,确定是开还是关。(2)控制功能根据要求启停风机;控制水量调节阀的开度;控制干蒸汽加湿器调节阀的开度;换热器的冬季防冻保护(3)集中管理功能显示新风机组启停状态,送风温湿度,风阀,水阀状态。通过中央控制管理机启停机组,修改送风参数设定值
为实现上述功能,相应的硬件配置如下:
新风机组的新风阀配置开关式风阀控制器。这是因为新风机组的风量是根据工作区内人员数量计算出来的,一般不做调节,因此新风门只有开、闭两种状态。在风机开启时,风阀全开,停机时,风阀全关。风阀的控制通过一路DO通道完成。当输入为高电平时,风阀全开;低电平时,风阀全关。若要了解风阀的实际状态,还可以用一路DI接受风阀执行器的反馈信号。
十、电子机械房间恒温控制器RMTE
该控制器广泛应用于商业、工业和住宅建筑。适用于供热,制冷和全年空调系统的室温控制,特别是风机盘管和电加热器等。特点是:高度敏感,无基准振动问题,硬防火塑料底座和上盖,一体结构,易于安装,系统OFF位置,切断所有环路。RMTE-HC2适用于2管制供热/关断/制冷,温度范围是10~30℃。电源等级:230V+-10%50/60HZ电流等级:恒温控制器1A230V/AC风机6(2)A230V/AC
十一、区域电动阀ZV-2/3
该系列阀门与时间温度控制器一起用来控制家庭和商业的中央供热,热水及冷水系统中的水量。主要参数:适用于各种安装要求和偏好,适用于供热和供冷应用,性能可靠,使用寿命长,易于安装和接线,结构坚固。相关数据如下:
类型产品编号种类DN关闭压力KV螺纹(外)介质
ZV-215087N72402-通开/关152.5bar3.2G1/2”制冷/热水(+5/+90)
ZV-220087N7241202bar3.2G3/4”
ZV-225087N7242250.8bar6.8G1”
ZV-315087N72373-通分流器152.5bar4.3G1/2”
ZV-320087N7238201bar4.6G3/4”
ZV-325087N7239251bar5.7G1”
十二、SIEMENS3LD主控和急停开关
3LD1开关可用于控制主回路、辅助回路以及三相电机和其它负载。应用
它是手动隔离开关,符合IEC947-3/DINVDE0660第107部分(EN60947-3)标准,并且满足隔离要求。3LD1控制开关可以用于:起/停(ON/OFF)。控制该开关有三个相邻的主触头,在开关的任何一边都可以装第四个触头。这个触头可以是N触头或一个带1常开和1常闭触点的开关
SIEMENS3TH中间继电器
3TH系列中间继电器,适用于交流50Hz或60Hz,电压至660V和直流电压至600V的控制电路中,用来控制各种电磁线圈及作为电信号的放大和传递,符合IEC947,VDE0660,GB14048等标准。继电器动作机构灵活,手动检查方便,结构设计紧凑,可防止外界杂物及灰尘落入继电器的活动部位。接线端都有罩覆盖,人手不能直接接触带电部位,安全防护性很高;继电器电磁铁工作可靠、损耗小、噪音小、具有很高的机械强度,线圈的接线端装有电压规格标志牌,标志牌按电压等级著有特定的颜色,清晰醒目,接线方便,可避免因接错电压规格而导致线圈烧毁。
十三、压差控制器
根据阀门口径,选择以下几种:ASV-PVDN25ASV-PVDN32AIPDN50
ASV压差平衡阀可自动保证供热和制冷系统的水力平衡。该工程中采用的是定水量系统,压差控制器用在排气与吸气压力自动保护中。使用ASV阀门,可避免烦琐的调试过程,安装完阀门即可。在所有负荷下自动平衡系统,也有助于节能。安装时需安在回水管,且流向应与阀体上的箭头一致。
十四、参考文献
建筑环境与设备的自动化刘耀浩天津大学出版社
建筑设备自动化卿晓霞重庆大学出版社
关键词空调系统自动控制传感器现场控制器PID控制模糊控制
1引言
空调耗能是建筑物耗能中的大户,随着能源供应的日趋紧张及人们对室内热环境、空气品质的要求愈来愈高,迫切要求在保持空调区域一定舒适度的前提下最大限度地降低空调能耗。空调自控系统可以使建筑内环境更舒适、设备运行更可靠、能源利用更充分,是现代楼宇空调系统重要的组成部分。但是由于资金缺口和工程进度等等问题,许多已建成的商用建筑和办公大楼的空调系统往往都没有设计或安装自动控制系统,随着建筑物的投入使用,会发现空调区域的温、湿度波动很大,往往会超过允许的变化范围,这时业主会提出空调系统自动控制改造的要求。
这种旧有空调系统进行自动控制改造与新空调系统的自控设计相比有许多不同之处,比如旧有的空调系统在运行中往往遭到一些人为因素的影响,致使风系统平衡遭到破坏,加装自控系统前必须先对旧有空调系统的风道系统重新进行平衡调整,不然自控系统可能达不到预期限效果;另外加装自动控制系统后对原空调系统的制冷、供热和水循环系统都交有一定的影响;同时在改造进程中也会遇到一些特殊的问题,有些问题在旧有空调系统的自控改造中是要特殊考虑的。
笔者于2001年参加了某广播电视大楼的空调系统自动控制改造的工作,该大楼的空调系统当初由于种种原因没有安装自控系统。随着室外气象条件的变化和室内负荷的变化,空调区域的温、湿度发生了很大的波动,常常会超过允许的变化范围。几年运行下来,每年都发生有的房间过热有的房间过冷的问题。室内工作人员为了防止过热或过冷大多将本室的部分送风口用胶纸等物遮挡,结果导致了风系统阻力的不平衡,破坏了其他房间的温、湿度状况,造成整个系统的失调。很多工作室出现了冬热夏冷的情况,这大大影响了工作人员的工作效率,而且对工作人员身体健康有着很大的损伤,且给室内高级机器设备的正常工作造成了一定的隐患(情况严重时会影响对温、湿度比较敏感的设备的正常工作)。由于系统失调,冷站和锅炉房提供的能量没能合理使用,造成极大的浪费,运行费用大大提高。在这种情况下,业主提出了给空调系统增加自动控制的要求。下面我们对此空调系统自控改造进行中遇到的问题和相应采取的解决方法作一个介绍,希望能给空调、自控设计和运行管理人员一些启迪。
2空调控制系统方案的确定
室温控制是空调自动系统中重要的环节,它是用温度敏感元件来控制相应的调节机构,使得送风温度随扰量的变化而变化。改变送风温度的方法有:调节加热器的加热量或冷却器的冷却量,调节新、回风混合比或一、二次回风比等。此广播电视大楼的空调系统是由11个空气处理机组组成的全空气系统,每个机组都是一次回风式系统,本着经济、简便的方针,此次空调系统的改造我们采用了常用的调节加热器的加热量和冷却器的冷却量的方法以改变送风湿度。室内相对湿度的控制可以采用两种方法:间接控制法(变露点)、直接控制法(变露点),此广播电视大楼很多工作室因一些仪器设备的缘故对室内相对湿度的要求较为严格,为此我们选用了直接控制法去控制室内空气的相对湿度,即用相对湿度敏感元件,控制相应的调节机构,直接根据相对湿度偏差进行调节,以补偿室内热湿负荷的变化。另外我们还加了一些辅助控制设备以更好的完成空调系统的自动控制。在此次改造进程中自控系统的所有电动调节阀和执行器我们全部采用了美国Hownywell公司的产品。
空调机组控制系统流程图及文字说明如下:
图1空气处理机组自动控制系统流程图
如图所示我们在回风机进程处设置了温、湿度传感器(AI),以测定总回风的温、湿度,为控制器的调节提供依据。在冷却器的供水管路上增加了水量调节阀(AO),夏季根据室内温度(接近回风温度)和设定湿度之间的差值,自支控制阀门的开启度,使室温控制在要求的范围内。另外在加热器的供水管上相应的增加了热水流量调节阀(AO),用于冬季的室温控制。我们在加湿器的供汽管道上加装了电动调节阀(AO)以根据室内相对湿度与设定湿度之间的差值,自动地调节蒸汽的加湿量,以确保室内相对温度维持在要求的范围内。同时我们在过滤器的两端设置了压差传感器(DI),用以测定过滤器的积尘情况,在过滤器的积尘达到一定程度后,发出报警信号,用以提醒检修人员及时更换或清洗过滤器。
广播电视台在录制节目进对噪声的要求很高,但由于此广播电视大楼空调系统在噪声处理上有些欠缺,录音室在录制节目时往往很难满足要求,为此工作人员要求在录制节目过程中关闭相应的空调机组以完成高质量的节目录制。为了自动检测、控制空调机组的启停,我们在送、回风机的进出口设置了压差传感器,用于检测风机的工作状态;在送、回风机的启动电路上安装了自控触点(DO)用以自动控制风机的启停。
控制系统我们选用了集散式控制系统DSC(DistributingControlSystems),它是70年代中期推出的一种计算机控制系统,集计算机、通信、控制、屏幕显示等技术为一体,实现了危险分散,控制分散,控制管理集中等功能,是一种面向工程师的计算机控制系统。笔者参与的改造工程应用的是我们自己开发的一套空调集散式控制系统,运行效果良好。
整个系统采用总线式网络结构,现场控制器以MCS-51系列单片机为核心开发,主监控机与现场控制器之间通过RS-485总线通信。每个空调机组配装一台现场控制器(DDC),自成体系,独立工作,其结构见图2所示。它的主要功能有如下几项:①定期采集各相应空调机组回风的温、湿度和送风机、过滤器的压差并存储,定期上传存储的现场采样数据;②接受主监控机下达的指令,接受监控机下传的修改后的控制规则;③根据主监控机发出的指令和现场采样数据控制相应调节阀的开度及电磁阀的开关,完成控制任务;④具有显示,设定,控制和通讯功能,可以全年不间断地对本组空调系统进行自动控制。
图2现场控制器原理图
主监控机通过网络控制器把整个系统连接起来,通过此通讯网络采集11台下位机传送来的各空调机组的运行数据。其采用windows操作平台,以图形方式及时地显示11套空调机组的运行状态,同时可以对各套空调机组的运行数据进行分析,指定出切合实际的运行方案。体制改革有控制软件采用我们自行研制的产品,可以保证系统安全可靠的工作。
3一个空调机组负责的两个工作室冷热不均匀的问题及解决方法
在冬季运行工况下,有一空调机组负责的两个相邻工作室,一个较热,另一则较冷。由于两个工作室由同一空调机组负责送回风,所以控制起来十分麻烦。究其原因是在最初的空调设计时考虑不周,或者是电视台在使用中更改了房间的使用功能所致。
一个工作室(设为A)其外维护结构很少且室内有很多机器及工作人员,散热量很大,在冬季几乎不用供热风就可满足要求甚至室内还会过热,这时应该考虑的是增大新风比降温;而另一个工作室(设为B)其外维护结构面积很大且机器不多(比如办公室等),冬季工况下需要持续的送热风才能满足室内热舒适性要求。虽然机组运转起来后可以在一定程度上混合冷、热丙部分室内回风,缓和两个工作室的冷热不均问题。但是在保证B工作室室内温度时,A工作室有时室温过高,严重影响了室内的工作人员的工作效率及机器的正常运转。本来可以用调节新、回风比的方法解决问题,可是这套系统不同于其他10套系统,它没有回风阀,只有新风阀。我们当时尝试遮住室内部分回风口的方法弥补没有回风阀的缺陷,结果其工作人员反映效果很好,不但温度舒适,感觉空气也比以前清闲。这种方法相当于增加了新风比例,从一定程度上缓解了问题,但这只是临时解决的问题的方法。
4PID控制与模糊控制相结合控制算法的应用
模糊控制的控制速度快、响应时间短、鲁棒性好,但是控制精度偏低,而传统PID控制其控制精度好,但是相应的时间偏长,两者的优点互补,把两者结合在一起就可以弥补对方的弱点,发挥其相互的优点。用模糊控制进行粗调,把被控制对象(室内温度)控制在小于阈值(模糊控制与PID控制的转换临界点),然后由传统的PID控制来精调,这样一来,控制的效果会大大的改善。因此在控制算法上我们采用了PID控制与模糊控制相结合的算法。
5加装自动控制系统后对冷水系统、供热系统影响的分析
在旧有空调系统进行自控改造的过程中,机房工作人员提出疑问,即我们的履行是否会对该空调系统的制冷、供热和水循环系统造成不良影响,比如调节阀关小是否会对制冷机的工作造成不好的影响、循环水泵是否能正常工作等等。为此我们对原冷水、供热循环系统因自控改造的影响程度进行了评估,具体如下:
5.1加装自动控制系统后对原冷水循环系统影响的分析
因为原冷水循环系统的供回水主干管之间未接旁通控制装置,当末端装置采用变流量调节阀以后,末端装置水流量的减少将使水系统的阻力增大,主干管之间的压差增大,冷冻水泵的工作点偏移,在这种情况下冷冻水泵是否可以正常工作?同时,调节阀关小是否会对制冷机的工作造成不好的影响?分析如下:
5.1.1对制冷机的影响
经甲方提供的数据计算得出待改造的11台空调机组所在的工作区所需的总制冷量约为2306500kcal/h,此工作区还包括很多风机盘管系统,但我们可以计算出11套系统总需冷量为714000kcal/h,占全部需冷量的百分比为:
如调节的最大限按50%考虑,则调节量占需冷量的百分比:
5.1.2对水泵的影响
原冷水循环系统采用3台IS200-150-400A单吸清水泵,两用一备,每台的设计流量为224~373m3/h,扬程为47.7~43m,两台合用时的流量为448~746m3/h,取中间值为597m3/h,扬程为45.6m。
被改造的11套系统的总水量:
占总水量的百分比;
如调节阀关闭一半,则系统的总水量变为:
如调节阀完全关闭,则系统的总水量变为:
从以上计算可以看出:(a)被改造的11套系统的需冷量占全部低区需冷量的30.9%,考虑极端情况,各阀门均调节到输出能量的50%,则系统的冷量从原来的100%变为100-(30.96÷2)=84.52%。制冷机组用的是约克离心式机组,从约克离心式机组的说明书中我们知道,机组可以在总负荷的20%~100%之间可靠的工作,故调节阀调节作用对冷水机组工作的可靠性是没有影响的;(b)被改造的11套系统的总水量占整个低区总冷冻水循环量的23.9%,如调节阀关闭一半,即11套系统的总水量从143m3/h减少为71.5m3/h。此时的系统总循环水量从原来的597m3/h减少为597-71.5=525m3/h。从IS200-150-400A水泵的样本中我们知道,此时水泵的工作点扬程大约为46.6m,不但水泵可以可靠的工作,而且不容还仍处于高效区(高效区的水量下限为448m3/h),因此不会对系统的冷冻水泵的工作造成不良影响。
5.2加装自动控制系统后对原供热系统影响的分析
加装自动控制系统后是否会对供热系统的板式换热器、热水循环泵等造成影响,我们也进行了分析:
5.2.1目前的供热系统是由锅炉提供3kg/cm2的蒸汽,经过两台Alfallaval板式换热器换成90℃的热水,再经过两台ISR125-100-200循环水泵供给A区低层,B区和C区的大约36台新风机组一组合式空调机组热水盘管,向相关区域提供热量后变70℃的回水,再经过板式换热器加热后供出。整个系统的最高处大约32m,膨胀水箱装在8.5层的设备层内,水箱内水面距锅炉房热水循环泵入口处的高度为33.5m,系统设有一补水泵,补消耗在热水循环泵入口处,水泵扬程为82.6m。
主要设备的规格:
①热水循环泵:ISR125-100-200三台扬程:50m,流量200m3/h
②板式换热器:M15-MFCL两台热负荷:6400kW
设计压力:16.0barg实验压力:20.8barg设计温度:150℃
③补水泵:40DL×7扬程:82.6m
5.2.2影响分析
可以看出,热水循环水泵入口的静压为33.5m,经过循环泵加压后的压力为33.5m+50m=83.5m,这一点是系统的最高压力,系统中其他点的压力都不会超过这一点的压力。当用户的热负荷减少,经查看ISR125-100-200水泵曲线,当该水泵的流量从200m3/h减少为100m3/h时,该泵扬程从50m上升为65m,在这种极端情况下,系统最大压力点的压力为33.5m+65m=98.5m。当补水泵向管网补水时,膨胀水箱的水位将会上升,当水面上升至上限时,电接点信号将会自动切断补水泵的补水,从而使补水点的压力恒定,维持在33.5m。
从以上分析可知,热水管网中任何一点的压力在任何情况下,都不会超过98.5m,而板式换热器的设计压力为16barg(大约160m水柱),从而可以知道,自动控制的加入不会给热水循环系统的管网和板式换热器造成不利的影响。
6结论
6.1加装自动控制系统是解决旧有空调系统温度超限、分布不均、局部过热/过冷和能量浪费的有效方法,对改善空调区域的环境质量,减少能量损失,降低运行成本有着显著的作用。
6.2对由多台空气处理器组成的较大规模空调系统进行自控改造时,集散热量式控制系统是应该首选的一种控制方式,它具有结构简单,功能强大、传输方便、数据安全可靠的特点。
6.3自控系统的调试就在对旧有空调系统的风道系统重新进行平衡调整后进行,不然自控系统可能达不到预期的效果。
6.4暖通空调工程中的控制对象多为温度、流量等这些具有非线性、滞后特征的参数,单一的控制算法很难获得较好的控制效果,PID控制与模糊控制的结合是个很好的算法选择。
参考文献
1张兆亮,集散控制系统,内蒙古:内蒙古人民出版社,1993
2王福瑞,单片微机测控系统设计大全,北京:北京航空航天大学出版社,1999。
主要是用作配电网的改造,其广阔的覆盖范围和迅速的传播速度使配电效率得到大幅度提升。计算机技术在发电、配电、变电、输电等环节起到十分重要的作用,形成了主站、子站、光纤终端组成的网络系统,这种合理化的格局,能够有效提升传输速度。(3)变电系统能使高负荷供电站运行更加稳定,自动化技术主要通过现代通信技术、信号处理和计算机技术实现对设备的检测,实现功能的优化和重组,有效控制电力系统的安全运行。
2计算机远动控制技术的应用分析
计算机远动控制技术的应用主要是通过遥测、遥信、遥控以及遥调等功能实现的,计算机远动控制技术是电力系统自动化技术中的核心技术,其在电力系统运行中发挥着重要的作用,尤其是在电力系统中的数据采集、通信传输以及信道编译码等环节中占据着重要的地位。其中,计算机远动控制技术的工作原理如图1所示。2.1远动控制技术中的数据采集技术远动控制技术中的数据采集技术主要有A/D技术和变送器技术等,其处理的信号多数为0~5V的TTL电平信号,而在电力系统自动化技术中,多数采用大功率参数,为了实现采用远动控制技术处理电力系统中的信号,只有通过变送器将大功率参数转变为TTL电平信号,从而达到遥信信息的编码和遥测信息的采集任务。其中在电力系统中,其遥信信息需要经过采集遥信对象的状态,将采集到的描述遥信对象状态的二进制位编进具体的遥信码中这2个途径进行传送,然后再通过数字多路开关将电力系统各路的遥信状态输出到接口电路中,最后通过接口电路将遥信信息送入到CPU系统中进行处理,从而实现遥信信息编码。2.2信道编译码技术分析在计算机远动控制技术中的信道编译码技术主要有编码、译码以及信息传输协议(规约)等。在电力系统自动化控制中,想要实现采用远动控制技术进行信息采集,则必须通过通信信道传输到调控中心才能使用。因此在电力系统自动化控制中,为了进一步保证传送的信息具有非常好的抗干扰能力,必须要对信息进行信道编译码,其中数字传输系统模型如图2所示。在上述电力系统自动化系统中,通过采用远动控制进行数字传输中,其干扰是不可避免的,而通过信道编译码能够有效克服通道中的干扰,其中,信道编译码的方法主要采用线性分组码中的循环码进行编译码。2.3循环式数据传送规约远动控制技术在变电站、电厂以及调度中心的数据通信应用中,首先需要在信道编译码前,预先设定通信方式和数据格式,也就是通信信息传输协议(规约),以保证电力系统中数据通信的可行性。另外,在电力系统远动控制技术中,其数据传输主要是以帧结构的形式进行传输的,其中重要的遥测信息主要安排在A帧,次要遥测信息安排在B帧,一般遥测信息安排在C帧。通过采用帧格式进行包装后,电力系统中的数据就能够有效按照规约进行传送,从而实现信道全部编译工作,实现对电力系统的全方位监控。
3电力系统自动化技术的发展及建议
对于电力系统自动化的发展方向,应从以下几点出发:(1)兼顾提高经济效益和改善自动化服务水平,我们追求的自动化技术应向着更优化、更具实效性、更加智能化、区域覆盖更广的方向前进。(2)加强电力自动化系统的设备稳定性,有效保障其安全运行,尽量减少大面积停电,建立一系列行之有效的处理机制,将停电损失降到最低。(3)开拓电力系统自动化的数字化之路,使数据更加全面,数字更加精准,力求节省更多时间和人力。(4)随着科技的不断进步,各种先进设备相继出现,对电力企业的工作人员提出了更高的要求,加强电力企业人员的技能培训和技术队伍建设,注重对新技术高素质人才的引进和吸收,培养全面发展的技术人才,鼓励员工以先进的理论知识和丰富的实践武装自身,投入更多精力到电力自动化的发展中去,推进电力自动化的发展进程。(5)在全球能源危机的严峻形势下,正是挑战电气自动化进程的关键时期,要以可持续的发展观,改善传统的管理模式,从整体化逐步转变为分布式、集约化的运营模式,实现能源利用的最大化、功耗的最小化、资金节约化。
4结语
其运作机理主要如下:首先,通过重力的作用,工件会从料仓中落下,同时,送料缸中的活塞杆向外伸出,并由此对工件进行一定程度的推动,工件在推动力的作用之下,会向右进行运动并最终实现定位;当相应的工件被定位之后,夹紧缸二代活塞杆就会向外伸出,夹紧工件,这一操作完成之后,钻削缸的活塞杆会对刀具进行一定程度的带动,随即刀具就会向下供给,从而对其进行一定程度上的钻削加工。而如果此时料仓之内并没有工件存在,那么在这种情况之下系统必须停在起始位置,同时还应该互锁以此来对再启动进行有效的防止。如果在操作的过程之中出现了紧急情况,应当及时按下复位按钮,将所有气缸都回复到起始位置之上。
2气动系统设计
在充分结合钻床设计要求的基础之上,我们采用了不同的气缸对送料、夹紧以及切削进行一定程度上的控制,值得注意的是,这三个气缸的动作有着一套固定的运行顺序,需要对此进行充分的结合,其动作顺序主要如下:启动按钮①送料缸进送料缸初始退送料缸全退同时夹紧缸进钻削缸快进钻削缸工进延时停留钻削缸快退夹紧缸退①气动原理主要如下所示:从整体角度来看,这一气动系统就是对三个气缸的动作进行一定程度上的控制,对于气缸而言,其往复频率相对较高,因此对于气缸类型的选择十分重要,一般情况下选择缓冲气缸较为适宜。同时为了对气缸到达行程终点时发出相应的信号并由此来完成预定的动作进行一定程度上的控制,在气缸之中还需要对磁性传感器进行利用,并由此实现对于气缸工作行程的有效控制。在主控阀方面,采用的主要是二位五通双电控先导式电磁阀,通过对这一类型的电磁阀进行一定程度的使用,可以有效避免因突然断电而造成机械损伤的状况。为了能够对气缸的速度进行有效的调节,还应该对单向节流阀进行一定程度的设置。除此之外,在这一系统当中,为了对钻削力的相关要求继续拧有效的保证,钻穴钢可以采用合适缸径的气缸。同时,还在料仓内对微动开关进行了安装,这样一来,就可以对仓内的工件进行一定程度上的监测。
3PLC控制设计分析
PLC,全称为可编程逻辑控制器,其运作机理如下:通过对可编程的存储器进行有效的使用,并由此来是实现其内部的存储程序,然后在此基础之上执行一系列的操作指令,例如执行逻辑运算、顺序控制、定时以及计数与算术操作等。执行相关的饿指令之后,有效运用数字或模拟式输入/输出对各种类型的机械或者生产过程进行一定程度的控制。对于PLC控制系统而言,其特点主要表现在如下几个方面:具有较高的可靠性、抗干扰的能力相对较强、功能的适应范围较广、编程简单容易掌握、在使用与维护上具有较大的便利性。随着经济的发展以及科学技术水平的不断提高,PLC控制系统已经取得了较大程度上的发展,它已经由原先的控制开关量阶段逐渐向进行顺序控制或运算管理的方向发展。目前状况下,PLC已经具有连续不间断的HD控制等多项功能,它可以将一台PC机作为主站,同时也可以使用一台PLC作为主站,并运用同种型号的PLC与之连接,作为其从站,共同组成一个PLC网络。我们将以PC机作为主站与以PLC作为主站,并与从站共同组成的PLC网络这两种方法进行一定程度的比较,不难发现后者比前者更为方便,主要表现在当用户进行程序编辑时,不再需要先对通信协议进行一定程度的了解,而是按照说明书的格式直接编写即可。除此之外,对于PLC网格来说,它不仅可以作为独立的DCS/TDCS,同时也可以将其当做DCS/TDCS的子系统进行使用,PLC大系统与DCS/TDCS具有一致性。
在本文的PLC自动化程序的设计中,主要是对STL指令的设计方法进行了采用。对于STL指令而言,它其实是一种,其操作元件主要是编号S0至编号S499的状态寄存器。当满足了相应的转换条件之时,就说明了下一步序的状态寄存器被置位,当前步序的状态寄存器自动复位。
4结论