时间:2022-05-28 11:17:17
序论:在您撰写铸造工艺论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1)铸造收缩率。考虑到客户明确要求材质上添加Cu合金,宽、高方向选用1%的缩尺,长度方向选用1.2%的缩尺。2)机械加工余量。参照客户要求所有加工面的加工余量在4mm~10mm范围内,导轨面、轴孔在发运前要进行粗加工,确定铸件导轨和轴孔的加工余量12mm,其余加工面的加工余量按照10mm制作。3)尺寸精度。在无特别指定情况下,拔模斜度、长度尺寸公差及壁厚尺寸公差参照顾客规范和公司内部规范制作。结构牢固、合理,尺寸、形状稳定精确,表面光洁,不变形[1]。对于影响铸件起型(芯)处均要求做成活块,且要求不允许出现尖角料,所有活块必须做标识,安装起型装置。
2造型材料
砂型、砂芯无特殊要求全部使用呋喃树脂砂。涂料下型外观芯采用喷涂方式,内腔芯采用流涂方式,易粘砂内腔部位采用先刷一遍涂料,后流两遍涂料的方式,其涂层厚度为0.5mm~1mm,且要求刷涂后的表面光滑均匀。涂料在每刷一遍后用明火点燃(醇基),使其自然干燥,每流涂一遍用煤气烘烤(水基),使其自然干燥,组芯合箱后再使用烘箱烘烤型腔。制芯时,轴孔芯、易粘砂部位采用铬矿砂。
3浇冒口系统
3.1浇注系统
浇注系统选择开放式:遵循快速充型原则(浇注时间短)和内浇口处低流速原则,多采用全开放、多点分散浇注方式,使铸型温度均匀,从而降低了铸件局部出现过热,降低了铸件出现冲砂、粘砂等缺陷。树脂砂铸铁件浇注时间可由下式确定:t=22.6×W(/ρ×S×fv×h12)(1)式中:t—浇注时间,s;W—浇注重量,3490kg;ρ—铸铁密度,灰铁件~7.0,kg/cm3;fv—速度因子(根据浇注系统类型确定);底注:fv=0.5;h—静压头:100cm;S—阻流断面面积,43.5cm2;计算得:t=51.8s.直浇道:80mm,直浇道面积50.24cm2;横浇道:(65+80),85×2mm,横浇道面积127.5cm2;内浇道:12×35(mm);4×25(mm),内浇道面积135.02cm2;直∶横∶内=1∶2.5∶2.7内浇口理论平均流速:V内=0.85m/s,可以实现在内浇口流速低的情况下快速充型。为验证上述计算结果的正确性,通过MAGMA软件做充型和温度场分析,结果见图4、图5,充型速度与理论计算基本一致,模拟充型时间为45s,理论计算为51.8s.从MAGMA模拟出的温度场结果来看,内浇道的开设比较理想,温度场分布均匀,基本上可以实现同时凝固,如图6、图7所示。
3.2冒口设计
此产品属于灰铁、薄壁机床铸件,厚大断面处于浇铸时的下型,不存在特殊的补缩要求。因此,铸造工艺上设计的冒口,主要是以排气畅通为主。按1.5S阻流截面积≤S排气截面积≤4S阻流截面积原则,设计冒口排气面积。
4浇注熔炼要求
1)化学成分控制目标。在满足顾客材质的化学成分和力学性能要求的前提下,根据公司内部配料规范,严格控制化学成分。2)熔化、浇注过程温度及时间控制。熔炼出铁温度控制到1460℃~1500℃;浇注温度控制到1380℃~1400℃;浇注时间控制到50s~60s;3)熔炼材质变质处理。采用包内孕育、孕育槽孕育和浇口盆孕育相结合的方式对铁液进行变质处理。
5结论
关键词:动梁;铸造方法;浇注系统;铸后处理;铸件产品
沈阳铸锻工业有限公司为大连某公司生产压机配套产品,动梁是其中最主要的铸件产品。接到生产计划后,技术部联合车间不断研究,最终生产出了完全符合厂家技术标准的要求,为以后生产此类铸件产品积累了宝贵的生产经验。
1生产支臂技术条件
1.1产品概况
动梁本体:13450kg,化学成分为ZG20MnMo,钢号ZG20MnMo,含C量0.17%~0.23%,含Mn量1.10%~1.40%,含Si量0.20%~0.40%,含P量0.030%以下,含S量0.030%以下。机械性能:抗拉强度≥490MPa;屈服强度≥295MPa;延伸率≥16%以上;冲击值39。
1.2要求的生产条件和方法
(1)动梁需要进行正回火热处理,以消除应力,同时提供热处理曲线,包括升温曲线、冷却温度、时间进度等;(2)铸造过程中,强烈要求严格进行质量控制;(3)内表面要打磨成更加光滑的表面。
1.3铸件表面质量要求
(1)铸件表面经过热处理后应平整光洁,不准有裂纹、缩孔、粘砂等缺陷;(2)铸件不得有影响强度之缺陷;(3)铸件表面质量要符合提出要求的标准范围之内。
1.4试料
动梁要带试料,试料要附在本体上,要与本体同炉进行热处理,试料的机械性能符合JB/T5000.6-2007提出的标准。
2工艺方案的拟定
2.1铸造方法的选择
铸造方法的选择在此不再详述。
2.2工艺方案的选择
(1)浇注位置:为了得到高质量的铸件和方便操作,采用正常的浇注位置。此浇注位置便于下芯、排气、利于补缩,便于操作。(2)分型面:分型面的选择是与浇注位置的选择密切相关。确定了浇注位置之后,即可按浇注位置的选择原则来选定分型面,此件选大平面作为分型面,便于操作、检验,易保证各部尺寸的准确,木型采用实样木型,便于起模。
2.3造型材料
为了达到尺寸准确、表面光洁的技术要求,为了确保检测的技术要求,选用碱酚醛自硬砂造型。
3工艺参数
3.1缩尺
缩尺是为了保证铸件冷却由液态到固态后尺寸符合图纸要求,而在制作木型时应进行适当的放尺。缩尺是根据铸件的线收缩率来确定的,而铸件的线收缩率又直接与铸件的材质、结构、收缩时的受阻情况、造型方案、造型用砂等有关。根据支臂的具体情况,缩尺定为1.8%。
3.2加工余量
加工余量是铸件在机械加工时去掉的一层金属的厚度。加工余量的大小取决于铸件的最大尺寸、加工面间的距离、加工面与加工基准面的距离、铸件的尺寸精度、浇注时加工面的位置。此件上面取加工量25mm,下侧面取20mm。
3.3工艺补正量
由于动梁造型时,中间芯子不准用铸工顶固定泥芯,故只能通过吊梁挂芯,所以大芯子内芯铁必须牢固、可靠,这就要使芯子的收缩应力增大,考虑到这种情况在相应部位设置了工艺补正量。
3.4拔模斜度
为了在造型时易于起模,而在模样的立面上给出一定的斜度。此件下面组一层芯,实样按木型操作规程守则留出拔模斜度。
3.5分型负数
由于铸型上、下型之间合箱后不严密,为防止跑火,合箱时要在分性面上放石棉绳。这样一来,就增加了型腔的高度。为了保证铸件尺寸符合要求,在模样上必须减去相当的高度,此高度尺寸即为分型负数。分型负数的大小,与铸件的尺寸有关,即与分型面的大小有关,与使用的型砂性质有关。分型负数定为3mm。
3.6涨箱系数
铸件在浇注时,由于钢水压力大,而型砂在受热后变软、分解,被高压钢水向后推,使铸件涨箱,在考虑毛重时,应将此数值加入。涨箱系数与铸件高度,壁厚和所用的造型材料有关,此件砂箱结合地坑实样造型,四周废砂撞平,涨箱系数定为5%。
3.7芯子
芯子是用来形成铸件的内腔,有时也用来形成较为复杂的不易起型的外皮。此件实样造型,中间出芯。
4浇注系统的设计及计算
4.1浇注系统的设计
浇注系统直接影响着铸件的质量,很多铸造缺陷,如包砂、夹杂物、浇不足、裂纹等缺陷,多与浇注系统不合理有关,所以铸钢件的浇注系统应设计合理,要保证钢水平稳地进入铸件型腔有合理的注入位置,保证钢水的顺序凝固。此件高500mm,为使钢水平稳的进入铸型,采用侧面一层水口,浇注时钢水由内浇口进入型腔,内浇口六道,此浇注系统达到了注入位置合理,钢水能平稳地进入铸型且造成了趋向于冒口的温度梯度,有利于钢水的顺序凝固,有利于铸件的内部质量的提高。
4.2浇注系统的计算
浇口各部分截面尺寸恰当,减少钢水的消耗,并有恰当的上升速度。此件毛重15.2吨,钢水总重25.4吨,需要一包浇注。(1)包孔直径¢70mm×2,总截面积为7693mm2;(2)直浇口2个¢120mm,总截面积为22608mm2;(3)横浇口一道¢100mm,总截面积也应为7850mm2。因为直浇口均匀进入横浇口同时向两个方向流去,只能扩大其面积;(4)内浇口6个¢80mm,总截面积为30144mm2;(5)浇注系统的截面积之比为:包孔∶直浇口∶横浇口∶内浇口=1∶2.94∶1.02∶3.92;(6)钢水在型腔中的上升速度计算如下:t=Q/nq(s)=15200/(120×2)=63.3s。式中:t为浇注时间(s);Q为铸件重量(kg);n为注孔数量(个);q为钢水的流量(kg/s)。包孔直径(mm)60时,q(kg/s)取90;包孔直径(mm)70时,q取120,包孔直径(mm)80时,取150,包孔直径(mm)100时,取150。V=H/t=500/63.3=7.9(mm/s)式中:V为钢水在型腔中的上升速度(mm/s);H为铸件的高度(mm)。
4.3分析
此上升速度可满足应用碱酚醛自硬砂生产大型厚壁铸钢件时钢水在型腔内上升速度的工艺要求。浇注时,待钢水上升至冒口内1/3高度时,在冒口内加足够量的高效覆盖剂。此浇注系统对碱酚醛自硬砂造型的动梁是比较适合的,它能使钢水以最短的时间、最快的速度充满型腔,减少钢水对型腔的烘烤时间,避免由于掉砂、起皮等因素而使铸件产生砂眼、粘砂、夹渣等铸造缺陷,另外由于内水口面积大、分散,有利于钢水热量的分散,避免局部过热,引起局部缩松等铸造缺陷。
4.4冒口
钢水浇注时从液态状态下经过降温直到凝固完了的全过程中,要发生体收缩。在收缩过程中,需要适当的钢水补缩,否则铸件将产生缩孔和缩松,冒口就是用来盛装钢水补缩铸件而设置的。为了形成铸件向着冒口的顺序凝固,有时采用内冷铁和外冷铁来控制,冒口高度设计以冒口内的金属液能保持较高的热量和压力为原则。动梁的冒口设置遵循了下列原则:(1)冒口设在铸件最后凝固的部位,即铸件的最高部位,以造成顺序凝固的条件;(2)冒口设在铸件浇注位置的上部,便于设置并提高了补缩效果;(3)冒口采用圆形和集中的大冒口,以提高其补缩效果。
5铸后处理
5.1气割与补焊
ZG20MnMo材质属合金钢,为了防止产生裂纹,切割冒口以后马上进到热处理炉中进行热处理。小的局部缺陷可局部加热补焊,补焊后要进行回火处理(温度为580oC),以消除应力。所用焊条为结J506或J507。
5.2热处理
根据技术要求,铸件要进行正、回火处理:图1此件在热处理时,第一个阶段时消除铸造应力和改善铸态组织性能的退火处理,在切割冒口之前进行,它的作用是在切割冒口时避免出现裂纹。消除缸体在缺陷处理过程中组织应力,保证缸体在正、回火后得到满足技术要求的综合机械性能。曲线的第二、三阶段是正、回火处理,在气割掉冒口后进行。风冷的目的是为了加强冷却速度,此阶段是得到合格的各项性能指标的根本保证。
5.3对操作及夹具的要求
(1)检查来件的标识和表面质量;(2)放平、垫实、加热要均匀。火焰不能直射铸件表面,均匀加热;(3)控制升温、冷却速度,做好操作记录。
5.4对缺陷处置
动梁作为大型铸钢件,由于铸造过程复杂,出现质量问题后的缺陷处理十分重要,同时也是保证缸体质量的重要手段。具体处理方法规定如下:(1)表面缺陷用砂轮磨光,经磁粉探伤检查无裂纹等铸造缺陷后进行补焊,内部缺陷在预热温度大于200℃的条件下用气割方法清理缺陷,并用砂轮磨光,经磁粉检查合格后施焊;(2)补焊时整体预热,并在施焊部位加热保温大于200℃;(3)焊修后缺陷部位及时保温处理,盖石棉板等,整体施焊后,入炉中进行补焊后的去应力处理;(4)去应力处理后的铸件,重新用砂轮打磨精整达到同整体表面一致,并重新进行磁粉及超声波探伤检查。
6结语
生产动梁时,主要是通过借鉴相似材质的工艺参数及以前生产过类似的铸钢件经验,在生产过程中,对木型质量要求特别高,表面必须光滑,做出圆角,不涂漆,刷脱模剂;要有良好的起模吊具;检测过程中,探伤合格、机械性能、NDT和力学性能达到了的要求;在铸造产品后,没有不良的质量后果。总之,通过设计选择动梁的工艺方案,通过生产实践验证了工艺,证明了这次工艺是切实可行的。这一实践不仅提高了沈阳铸锻工业有限公司铸件工艺方案的设计水平,还成功地完成了客户的配套生产任务。
作者:王重鑫 单位:沈阳铸锻工业有限公司
参考文献
[1]李庆春.铸件成型理论基础[M].北京:机械工业出版社,1982.
差压铸造工艺的过程依次为:升液、充型、结壳、增压、结晶保压和卸压。(1)同步压力该压力是指在差压铸造工艺过程中上密封罐与下密封罐压力相同时的压力,取为0.65MPa。(2)升液速度与充型速度升液速度为金属液在升液管中上升的平均速度,其大小的选取需保证金属液上升平缓。充型速度为金属液在模具型腔中充型的平均速度,其大小的选取需防止金属液紊流的产生。取充型速度和升液速度分别为45mm/s、35mm/s。(3)升液压力与充型压力升液压力为可以使金属液上升至升液管管口处的压力,主要由升液管高度决定。充型压力为可以使金属液从升液管管口提升至型腔顶部的压力。由于金属液的流动阻力和粘度将在充型过程中快速增加,所以实际压差应比克服金属液重力所需压差适当大些。综合以上信息,为了使得铸造过程中具有合适的充型压力和升液压力,铸造的加压速度选为0.05MPa/s。(4)结壳增压压力与结壳时间为了不破坏结壳,同时保证增压补缩效果,可在结壳开始5s后进一步增加适当的压力,使得铸件壳层在较高的压力环境下进一步增厚,直至铸件凝固。这样便可保证铸件拥有完整的轮廓和良好的表面质量。(5)结晶增压压力在铸件结壳结束后,为了保证铝液能够继续对铸件补缩,在原有的结壳增压压力上,再增加适当的压力,使得铝液在该压力下完成结晶,该压力便是结晶增压压力。随着铸造的推进,铝液不断凝固,铸件补缩通道不断变小,铝液对铸件的补缩变得越来越困难。为了保证铝液能够继续经升液管流入铸型,对铸件补缩,必须在原有的结壳增压压力上继续增加适当的压力。这样不仅可以消除铸件可能存在的疏松和缩孔缺陷,还可提高其组织致密度,提高其力学性能。试验表明结晶增压压力越高,铸件的力学性能越好,但结晶增压压力增加得太大,将大幅提高铸造成本,综合考虑两方面因素,取结晶增压压力为0.01MPa。(6)结壳和结晶增压速度结壳和结晶增压速度分别指在铸件结壳和结晶过程中,增压压力建立的速度。为了保证结壳和结晶过程中压力快速建立,结壳增压速度取为0.015MPa/s,结晶增压速度取为0.035MPa/s。(7)结晶时间结晶时间为在结晶增压压力下,铸件凝固补缩需要的时间。该时间主要由连接升液管的横浇道的冷却凝固时间决定。在铸造试验中,通过确定浇道残留长度来确定铸件结晶时间。取浇道残留长度为50mm。(8)充型压差铸造过程中的充型压差ΔP由式(1)计算得出。式中:H为金属液充型过程中最低点到最高点之间的高度,mm;ρ为金属液的密度,g/cm3;K为阻力系数,K∈(1.0,1.5),阻力越小K越小,阻力越大K越大。本铸造工艺充型压差为0.035MPa。(9)铸型预热温度为了保证涂料粘结牢固,铸型需预先加热至150℃左右。在喷完涂料后,铸型需进一步预热至200~250℃后,才可以进行浇注。(10)铝液浇注温度浇注温度过高将导致铝液结晶粗大,铸件内部组织疏松。浇注温度过低则会减小铝液充型能力,导致铸件产生冷隔和欠铸等缺陷,甚至产生浇注不足的问题。本铸造试验浇注温度取为700~720℃。
2铸造缺陷的预防
为了防止铸件出现铸造过程中较易发生的疏松和缩孔缺陷,将补缩暗冒口分别设置于铸件各个大热节处,使铝液可对其补缩。同时在模具不同位置喷涂冷却速度不同的涂料,从而保证铸件不同位置的凝固速度有利于铝液补缩。
3仿真与试验结果分析
3.1仿真结果分析充型仿真结果如图4所示。图5为铝合金舱门盖的凝固仿真结果。图6为仿真所得铸件横断面缩孔分布。铝液充型时间为2s,凝固时间为460s。铸件上部厚大部位无缩孔缺陷,缩孔缺陷均被引至冒口内。
3.2铸件试制及检测铸件剖面如图8所示。可以看出,铸件外壳完整,内部无缺陷。经力学性能测试可知,铸件抗拉强度320~330MPa,伸长率5%~6%。而采用低压铸造工艺所得铸件抗拉强度为290~300MPa,伸长率为4%~5%。由此可见,差压铸造工艺可获得力学性能更好的铸件。
4结论
1.1缸体铸件技术要求
S10缸体铸件材质为HT250,毛坯重约42kg,重量偏差按照GB/T11351—1989的MT8执行。缸体一般壁厚4+0.8-0.5mm,铸件尺寸公差按GB/T6414—1999的CT8,毛坯缸孔壁厚差要求加工余量要求:2.5mm±0.5mm。可见,缸体基本属于薄壁轻量化设计,且尺寸精度要求较高。铸造工艺设计时应主要考虑立浇工艺,并考虑冷芯为主,以保证其要求的精度。
1.2水套结构分析与措施
水套芯结构特点:①水套芯总高97.5mm,一般厚度5~8mm;②水套芯左端下部有特殊的异形结构。水套芯可能出现异形处变形、断芯,从而影响该处壁厚和尺寸;另外,该异形处存在清砂难度。因此,水套芯应采用强度较高的热芯;水套芯异形处应采用特殊涂料和工艺,以保证该处不发生粘砂和易于出砂。同时,选择底注立浇工艺方案,铁液平稳上升、平稳充型,对整个水套芯的冲击相对于卧浇工艺方案要小很多。
1.3油道结构分析与措施
S10缸体外形单侧有2根油道芯,两侧基本对称,共有4根油道芯。特点是:①油道芯细长,长度266mm,贯穿缸体上下面;②截面单薄,弯曲程度大,在浇注过程中易变形或断裂。因此,油道芯应采用较高强度的热芯;同时为防止和减少热变形,应选用高强度低膨胀的芳东覆膜砂。此外,选择底注立浇工艺方案对细长油道芯受铁液冲击相对于卧浇工艺方案要好很多。
2S10缸体铸造工艺设计
2.1立浇工艺方案选择
依据对S10缸体水套芯和油道芯结构分析,依据对立浇工艺和卧浇工艺在充型时水套芯与油道芯的受力分析,决定选用:缸孔朝上,底注立浇工艺方案。S10缸体铸件工艺如图9;砂芯构成如表4;水套芯和油道芯用芳东覆膜砂,见表5。水套芯异形处实施3层涂料:先刷一层锆英涂料,表干后水套芯整体浸涂水基石墨涂料,最后在异形处再刷锆英涂料。
3试制结果
采用前述工艺措施,按调整后的浇注系统,对热节的3个工艺方案均进行了调试。此外,经铸件解剖表明:水腔清洁,水套异形处光滑无粘砂;水套芯和缸筒芯形成的缸孔壁厚均匀,经检测缸孔壁厚差Δδ≤1.0mm;油道芯未发生断裂和漂浮,油道壁厚正常。对于热节处采用的3个方案,经外观检查和解剖,均未见缩孔和缩松缺陷。铸件经多次加工和加工后解剖表明:尺寸合格,壁厚正常。对热节处的3个工艺方案,为稳定和确保热节处无收缩缺陷,今后可优先选用无冒口的方案1,其次是另2个方案。
4结论
(1)S10缸体水套芯单薄,有异形结构;油道芯贯穿缸体上下平面,细长而弯曲。采用底注立浇工艺,铁液平稳上升,对水套芯和油道芯的冲击小。有利于防止水套芯受冲击变形,保证缸孔壁厚均匀;也有利于防止油道芯漂芯和断芯,保证油道壁厚正常。
(2)水套芯和油道芯设计为热芯,并选用含较大比例宝珠砂的高强度低膨胀的芳东覆膜砂,有利于防止在高温铁液作用下因膨胀而发生的变形,有益于保证缸孔壁厚均匀和油道壁厚正常。水套芯异形结构处实施3层涂料,使不易清理的该处光滑洁净无粘砂。
(3)铸件热节分析计算表明,需要强补缩。按冷铁覆盖面积≥热节散热面积的16.7%的原则,设计的3个工艺方案,试制结果均无收缩缺陷。
本文拟生产的马氏体不锈钢叶轮材质为ZG1Cr13Ni。该材质浇注温度高,砂型铸造易产生表面粘砂;由于缩性大,极易产生缩松、裂纹和晶粒粗大等铸造缺陷;此外,其冷裂倾向也较严重。图1和图2分别是马氏体不锈钢叶轮毛坯尺寸和三维实体。由图可见,该铸件属于结构复杂件,一方面是壁厚不均匀,厚壁和薄壁之间尺寸相差较大,补缩、收缩应力等问题需在工艺设计时特别关注;另一方面是存在各种曲面,而且曲面处壁厚极不均匀且相对较薄,因此,工艺设计时要充分考虑保证充型的完整性。根据叶轮铸件的结构特点,本文选择了两箱造型法,并将铸造分型面设置在叶轮中间部位,分型面位置见图3。铸件顶端壁厚较厚,应考虑在该位置添加冒口。铸件的凝固时间取决于它的体积V和传热表面积A的比值,其比值称为凝固模数。
2叶轮铸造工艺设计与优化
2.1马氏体不锈钢叶轮铸造工艺模拟分析
采用有限元分析软件对铸造工艺进行模拟,铸件模型选择的材料为马氏体不锈钢,砂箱模型选择的材料为树脂砂,铸件与砂箱之间的换热系数为500W/(m2•K),浇注温度为1560℃,充型速度为42kg/s,浇注时间为27s,热传递方式为空气冷却,设置重力加速度为9.8kg/s2,初始条件为金属液温度1560℃、砂箱温度25℃,运行参数采用默认设置。叶轮充型过程模拟结果见图5。可以看出,金属液充满浇道,整体充型平稳,见图5a。当浇注完成后,铸型内腔全部被充满,不存在浇不足现象,见图5b。模拟结果表明,该铸件的铸造工艺设计方案保证了浇注过程的平稳性,也保证了铸件形状的完整性,说明浇注系统设计合理。图6为铸件浇注265s后透视状态图,可以发现,叶轮下端圆环、分型面中心部位交界处存在缩孔,且个别叶轮侧冒口底端存在封闭的高温区间,该位置也可能出现缩孔。由此可见,该工艺设计方案在保证铸件补缩方面还存在设计不足。因此,原设计方案必须改善冒口设计,或者采取必要的工艺补救方案。
2.2工艺优化
针对初始设计工艺所出现的缺陷问题,对叶轮铸造工艺进行优化。考虑在叶轮底端圆环和叶轮中心位置出现的缩孔,我们分别在叶轮底端加入圆环形冷铁,在叶轮中间部位六个侧冒口之间加设楔形冷铁。改进后叶轮铸造工艺图如图7所示。对改进后的工艺方案进行模拟,工艺改进后的叶轮充型模拟结果。当充型开始14s时,充填部位型腔内金属液完全充满浇道,充型平稳,没有明显飞溅,见图8a,说明浇注系统设计仍能保证充型的平稳性;图8b是充型至27s时(充型完毕)的状态图,可以看出,金属液已完全充满型腔,型腔内不存在浇不足等缺陷。
3结论
(1)不锈钢叶轮铸件选取阶梯式浇注方式和开放式浇注系统,可以保证铸件充型过程中金属液的平稳性及充型后的铸件形状完整性。
(2)不锈钢叶轮铸件直接采用明冒口和暗冒口不能完全防止铸件内产生缩孔与缩松,当冒口与冷铁配合使用时可以消除缩孔与缩松。
过去20年,互联网是改变社会、改变商业最重要的技术;如今,物联网的出现,让许多物理实体具备了感知能力和数据传输的表达能力;未来,随着移动互联网、物联网以及云计算和大数据技术的成熟,生产制造领域将具备收集、传输及处理大数据的高级能力,使制造业形成工业互联网,带动传统制造业的颠覆与重构。
“工业互联网”的概念最早是由美国通用电气公司(GE)于2012年提出的,随后联合另外四家IT巨头组建了工业互联网联盟(IIC),将这一概念大力推广开来。“工业互联网”主要含义是,在现实世界中,机器、设备和网络能在更深层次与信息世界的大数据和分析连接在一起,带动工业革命和网络革命两大革命性转变。
工业互联网联盟的愿景是使各个制造业厂商的设备之间实现数据共享。这就至少要涉及到互联网协议、数据存储等技术。而工业互联网联盟的成立目的在于通过制定通用的工业互联网标准,利用互联网激活传统的生产制造过程,促进物理世界和信息世界的融合。
工业互联网基于互联网技术,使制造业的数据流、硬件、软件实现智能交互。未来的制造业中,由智能设备采集大数据之后,利用智能系统的大数据分析工具进行数据挖掘和可视化展现,形成“智能决策”,为生产管理提供实时判断参考,反过来指导生产,优化制造工艺(图1)。
智能设备可以在机器、设施、组织和网络之间实现共享促进智能协作,并将产生的数据发送到智能系统。
智能系统包括部署在组织内的机器设备,也包括互联网中广泛互联的软件。随着越来越多的机器设备加入工业互联网,实现贯通整个组主和网络的智能设备协同效应成为可能。深度学习是智能系统内机器联网的一个升级。每台机器的操作经验可以聚合为一个信息系统,以使得整套机器设备能够不断地自行学习,掌握数据分析和判断能力。以往,在单个的机器设备上,这种深度学习的方式是不可能实现的。例如,从飞机上收集的数据加上航空地理位置与飞行历史记录数据,便可以挖掘出大量有关各种环境下的飞机性能的信息。通过这些大数据的挖掘与应用,可以使整个系统更聪明,从而推动一个持续的知识积累过程。当越来越多的智能设备连接到一个智能系统之中,结果将是系统不断增强并能自主深度学习,而且变得越来越智能化。
工业互联网的关键是通过大数据实现智能决策。当从智能设备和智能系统采集到了足够的大数据时,智能决策其实就已经发生了。在工业互联网中,智能决策对于应对系统越来越复杂的机器的互联、设备的互联、组织的互联和庞大的网络来说,十分必要。智能决策就是为了解决系统的复杂性。
当工业互联网的三大要素——智能设备、智能系统、智能决策,与机器、设施、组织和网络融合到一起的时候,其全部潜能就会体现出来。生产率提高、成本降低和节能减排所带来的效益将带动整个制造业的转型升级。
所以说,“工业互联网”代表了消费互联网向产业互联网的升级,增强了制造业的软实力,使未来制造业向效率更高、更精细化发展。
“工业4.0”中的智能制造
2009到2012年欧洲深陷债务危机,德国经济却一枝独秀,依然坚挺。德国经济增长的动力来自其基础产业——制造业所维持的国际竞争力。对于德国而言,制造业是传统的经济增长动力,制造业的发展是德国工业增长不可或缺的因素,基于这一共识,德国政府倾力推动进一步的技术创新,其关键词是“工业4.0”。
“工业4.0”中,互联网技术发展正在对传统制造业造成颠覆性、革命性的冲击。网络技术的广泛应用,可以实时感知、监控生产过程中产生的海量数据,实现生产系统的智能分析和决策,使智能生产、网络协同制造、大规模个性化制造成为生产方式变革的方向。“工业4.0”所描绘的未来的制造业将建立在以互联网和信息技术为基础的互动平台之上,将更多的生产要素更为科学地整合,变得更加自动化、网络化、智能化,而生产制造个性化、定制化将成为新常态。
自动化只是单纯的控制,智能化则是在控制的基础上,通过物联网传感器采集海量生产数据,通过互联网汇集到云计算数据中心,然后通过信息管理系统对大数据进行分析、挖掘,从而作出正确的决策。这些决策附加给自动化设备的是“智能”,从而提高生产灵活性和资源利用率,增强顾客与商业合作伙伴之间的紧密关联度,并提升工业生产的商业价值(图2)。
生产智能化。全球化分工使得各项生产要素加速流动,市场趋势变化和产品个性化需求对工厂的生产响应时间和柔性化生产能力提出了更高的要求。“工业4.0”时代,生产智能化通过基于信息化的机械、知识、管理和技能等多种要素的有机结合,从着手生产制造之前,就按照交货期、生产数量、优先级、工厂现有资源(人员、设备、物料)的有限生产能力,自动制订出科学的生产计划。从而,提高生产效率,实现生产成本的大幅下降,同时实现产品多样性、缩短新产品开发周期,最终实现工厂运营的全面优化变革。
传统制造业时代,材料、能源和信息是工厂生产的三个要素(图3)。传统制造业发展的历史,就是工厂利用材料、能源和信息进行物质生产的历史。材料、能源和信息领域的任何技术革命,必然导致生产方式的革命和生产力的飞跃发展。但是,随着移动互联网和云计算、大数据技术的发展,计算机到智能手机等移动终端的演进,越来越多功能强大的智能设备以无线方式实现了与互联网或设备之间的互联。由此衍生出物联网、服务互联网和数据网,推动着物理世界和信息世界以信息物理系统(CPS)的方式相融合。也可以说,是这种技术进步使得制造业领域实现了资源、信息、物品、设备和人的互通互联。
通过互通互联,云计算、大数据这些新的互联网技术,和以前的自动化的技术结合在一起,生产工序实现纵向系统上的融合,生产设备和设备之间,工人与设备之间的合作,把整个工厂内部的要素联结起来,形成信息物理系统,互相之间可以合作、可以响应,能够开展个性化的生产制造,可以调整产品的生产率,还可以调整利用资源的多少、大小,采用最节约资源的方式。
“工业4.0”时代,在智能工厂中,CRM(Customer Relationship Management,客户关系管理)、PDM(Product Data Management,产品数据管理)、SCM(Supply chain management,供应链管理)等软件管理系统可能都将互联。届时,接到顾客订单后的一瞬间,工厂就会立即自动地向原材料供应商采购。原材料到货后,将被赋予数据,“这是给某某客户生产的某某产品的某某工艺中的原材料”,使“原材料”带有信息。带有信息的原材料也就意味着拥有自己的用途或目的地。在生产过程中,原材料一旦被错误配送到其他生产线,它就会通过与生产设备开展“对话”,返回属于自己的正确的生产线;如果生产机器之间的原材料不够用,生产机器也可以向订单系统进行“交涉”,来增加原材料数量;最终,即便是原材料嵌入到产品内之后,由于它还保存着路径流程信息,将会很容易实现追踪溯源(图4)。
设备智能化。在未来的智能工厂,每个生产环节清晰可见、高度透明,整个车间有序且高效地运转。“工业4.0”中,自动化设备在原有的控制功能基础上,附加一定的新功能,就可以实现产品生命周期管理、安全性、可追踪性与节能性等智能化要求。这些为生产设备添加的新功能是指通过为生产线配置众多传感器,让设备具有感知能力,将所感知的信息通过无线网络传送到云计算数据中心,通过大数据分析决策进一步使得自动化设备具有自律管理的智能功能,从而实现设备智能化。
“工业4.0”中,在生产线、生产设备中配备的传感器,能够实时抓取数据,然后经过无线通信连接互联网传输数据,对生产本身进行实时的监控。设备传感和控制层的数据与企业信息系统融合形成了信息物理系统(CPS),使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导设备运转。设备的智能化直接决定了“工业4.0”所要求的智能生产水平。
能源管理智能化。近年来,环境和节能减排已成为制造业最重视的课题之一。许多制造业企业都已经开始应用信息技术,对生产能耗进行管理,以最具经济效益的方式,部署工业节能减排与综合利用的智能化系统架构,从资源、原材料、研发设计、生产制造到废弃物回收再利用处理,形成绿色产品生命周期管理的循环。
供应链管理智能化。在传统的制造业生产模式中,无论是工厂还是供应商,都需要为制造业的零部件或原材料的库存付出一定的成本支出,由于供应商和工厂之间的信息不对称和非自动的信息交换,生产的模式只能采用按计划或按库存生产的模式,灵活性和效率受到了约束。
“工业4.0”时代,复杂的制造系统在一定程度上也加速了产业组织结构的转型。传统的大型企业集团掌控的供应链主导型将向产业生态型演变,平台技术以及平台型企业将在产业生态中的展现出更多的作用。因此,企业竞争战略的重点将不再是做大规模,而将是智能化的供应链管理,在不断变化的动态环境中获得和保持动态的供需协调能力。
供应链管理智能化将统一工厂的零部件库存和供应商的生产流程,从而保证工厂的零部件库存的最小化,降低库存带来的风险,降低生产成本。供应链管理智能化要求企业间的信息采用基于事件驱动的方式交换信息,信息的交换是实时的,并且对方同样可以做出实时的反应,供应链上不同企业的运作效率与在同一个企业中不同部门的运作一样敏捷,具有满足不断变化的需求的适应性。供应链管理智能化将为供应链上的企业带来更大的利益,供应链上各个企业的协同制造将为降低制造成本、物流成本,缩短制造周期,提供更好的服务和有力的保障。
实现上述四个智能化体现了“工业4.0”的宏大愿景。“工业4.0”认为实现上述四个智能化其实是一个简单的概念:将大量的有关人、信息管理系统、自动化生产设备等物体融入到信息物理系统(CPS)中,在制造系统中,利用产生的数据为企业服务,协同企业的生产和运营。
智能制造的内涵
无论是德国的“工业4.0”,还是美国的“工业互联网”,其实质与我国工业和信息化部推广的“两化融合”战略大同小异。某种程度上说,以智能制造为代表的新一轮工业革命或许对于我国制造业是一个很好的机会,也可能是我国制造业转型升级的一个重要机遇。
工厂内实现“信息物理系统”。德国“工业4.0”其实就是基于信息物理系统(CPS)实现智能工厂,最终实现的是制造模式的变革。CPS概念最早是由美国国家基金委员会在2006年提出,被认为有望成为继计算机、互联网之后世界信息技术的第三次浪潮。
CSP是融合技术,包括计算、通信以及控制(传感器、执行器等)。中国科学院何积丰院士指出:“CPS,从广义上理解,就是一个在环境感知的基础上,深度融合了计算、通信和控制能力的可控可信可扩展的网络化物理设备系统,它通过计算进程和物理进程相互影响的反馈循环实现深度融合和实时交互来增加或扩展新的功能,以安全、可靠、高效和实时的方式监测或者控制一个物理实体。CPS的最终目标是实现信息世界和物理世界的完全融合,构建一个可控、可信、可扩展并且安全高效的CPS网络,并最终从根本上改变人类构建工程物理系统的方式。”
目前所说的制造业信息化,首先强调的是CAD(Computer Aided Design,计算机辅助设计)、CAM(Computer Aided Manufacturing,计算机辅助制造)等工业软件和PPS(生产计划控制系统)、PLM(产品生命周期管理)等信息化管理系统。主要应用于由上而下的集中式中央控制系统。
而信息物理系统(CPS)则通过物体、数据以及服务等的无缝连接,实现了生产工艺与信息系统融合,形成了智能工厂。物联网和服务互联网分别位于智能工厂的三层信息技术基础架构的底层和顶层。最顶层中,与生产计划、物流、能耗和经营管理相关的ERP、SCM、CRM等,和产品设计、技术相关的PLM处在最上层,与服务互联网紧紧相连。中间一层,通过CPS物理信息系统实现生产设备和生产线控制、调度等相关功能,从智能物料供应,到智能产品的产出,贯通整个产品生命周期管理。最底层则通过物联网技术实现控制、执行、传感,实现智能生产(图5)。
智能工厂的产品、资源及处理过程因CPS的存在,将具有非常高水平的实时性,同时在资源、成本节约中也颇具优势。智能工厂将按照重视可持续性的服务中心的业务来设计。因此,灵活性、自适应以及机械学习能力等特征,甚至风险管理都是其中不可或缺的要素。智能工厂的设备将实现高级自动化,主要是由基于自动观察生产过程的CPS的生产系统的灵活网络来实现的。通过可实时应对的灵活的生产系统,能够实现生产工程的彻底优化。同时,生产优势不仅仅是在特定生产条件下一次性体现,也可以实现多家工厂、多个生产单元所形成的世界级网络的最优化。
工厂间实现“互联制造”。随着信息技术和互联网、电子商务的普及,制造业市场竞争的新要求出现了变化。一方面,要求制造业企业能够不断地基于网络获取信息,及时对市场需求做出快速反应;另一方面,要求制造业企业能够将各种资源集成与共享,合理利用各种资源。
互联制造能够快速响应市场变化,通过制造企业快速重组、动态协同来快速配置制造资源,在提高产品质量的同时,减少产品投放市场所需的时间,增加市场份额;能够分担基础设施建设费用、设备投资费用等,减少经营风险。通过互联网实现企业内部、外部的协同设计、协同制造和协同管理,实现商业的颠覆和重构。通过网络协同制造,消费者、经销商、工厂、供应链等各个环节可利用互联网技术全流程参与。传统制造业的模式是以产品为中心,而未来制造业通过与用户互动,根据用户的个性化需求,然后开始部署产品的设计与生产制造。
另外,作为一个未来的潮流,工厂将通过互联网,实现内、外服务的网络化,向着互联工厂的趋势发展。随之而来,采集并分析生产车间的各种信息向消费者反馈,从工厂采集的信息作为大数据经过解析,能够开拓更多的、新的商业机会。经由硬件从车间采集的海量数据如何处理,也将在很大程度上决定服务、解决方案的价值。
过去的制造业只是一个环节,但随着互联网进一步向制造业环节渗透,网络协同制造已经开始出现。制造业的模式将随之发生巨大变化,它会打破传统工业生产的生命周期,从原材料的采购开始,到产品的设计、研发、生产制造、市场营销、售后服务等各个环节构成了闭环,彻底改变制造业以往仅是一个环节的生产模式。在网络协同制造的闭环中,用户、设计师、供应商、分销商等角色都会发生改变。与之相伴而生,传统价值链也将不可避免的出现破碎与重构。
工厂外实现“数据制造”。满足消费者个性化需求,一方面需要制造业企业能够生产或提供符合消费者个性偏好的产品或服务,一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人的需求不同,导致需求的具体信息也不同,加上需求的不断变化,就构成了产品需求的大数据。消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。
因此,大数据将构成制造业智能化的一个基础。大数据在制造业大规模定制中的应用除了围绕定制平台这一核心之外,还包括数据采集、数据管理、订单管理、智能化制造等。定制数据达到一定的数量级,就可以实现大数据应用,通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用(图6)。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
“数据制造”时代,互联网技术将全面嵌入到工业体系之中,将打破传统的生产流程、生产模式和管理方式。生产制造过程与业务管理系统的深度集成,将实现对生产要素的高度灵活配置,实现大规模定制生产。从而,将有力推动传统制造业加快转型升级的步伐。毫无疑问,“数据制造”将会改变制造业思维,给制造业带来更多的灵活性和想象空间,也或将颠覆制造业的游戏规则。
对我国的启示
没有强大的制造业,一个国家将无法实现经济快速、健康、稳定的发展,劳动就业问题将日趋突显,人民生活难以普遍提高,国家稳定和安全将受到威胁,信息化、现代化将失去坚实基础。改革开放以来的30多年中,中国经济经历了接近10%的高速增长阶段,而制造业是我国经济高速增长的引擎。目前,我国尚处于工业化进程的中后期,制造业创造了GDP总量的三分之一,贡献了出口总额的90%,未来几十年制造业仍将是我国经济的支柱产业。
重新定义“智能制造”的关键词。进入21世纪以来,制造业面临着全球产业结构调整带来的机遇和挑战。特别是2008年金融危机之后,世界各国为了寻找促进经济增长的新出路,开始重新重视制造业,欧盟整体上开始加大制造业科技创新扶持力度;美国于2011年提出“先进制造业伙伴计划”,旨在增加就业机会,实现美国经济的持续强劲增长。美国国家科学技术委员会于2012年2月正式了《先进制造业国家战略计划》,德国于2013年4月推出《工业4.0战略》。我们应该通过比较研究《美国先进制造业国家战略计划》《德国工业4.0战略》等资料中的先进制造业关键词,进而来定义未来制造业的发展方向(图7)。
一是软性制造。大规模制造时代,传统的制造环节利润空间越来越受到挤压。所以,从发达国家发展先进制造业的战略规划中均可以看到,制造业的概念和附加值正在不断从硬件向软件、服务、解决方案等无形资产转移。相对于传统制造业,如今的制造业是软件带给硬件功能、控制硬件、对硬件造成极大影响。同时,与以往的硬件商品所不同,目前的制造业中,对商品附属的服务或者基于商品上面的解决方案的需求正在快速增加。
所谓软性制造,就是增加产品附加价值、拓展更多、更丰富的服务与解决方案。因为相对于硬件,产品内置的软件、附带的服务或者解决方案通常是软性和无形的,都是“看不见”的事物,所以称之为软性制造。
软性制造不再将“硬件”生产视为制造业,而认为“软件”在制造业中不断发挥主导作用,商品产生的服务或解决方案将对制造业的价值产生巨大影响。所以,未来的制造业需要放弃传统的“硬件式”的思维模式,而要从软件、服务产生附加值的角度去发展制造业。软件、服务在整个制造业价值链中所占的比重将越来越大,呈现显著的增长趋势。未来制造业企业向顾客提供的不再是单纯的产品,而是各种应用软件与服务形态集成于一体的整体解决方案。
二是从“物理”到“信息”的趋势。以往,每当提及制造业,恐怕都认为是各种零部件构成硬件产品的核心。随着封装化、数字化的发展,零部件生产加工技术加速向新兴市场国家转移,这样,零部件本身的利润就难以维系。因此,发达国家制造业开始更加注重通过组装零部件进行封装化,将部分功能模块化,将系列功能系统化,来提升附加价值。
模块化是将标准化的零部件进行组装,以此来设计产品。从而能够快速响应市场的多样化需求,满足消费者的各项差异化需求。以往,在产品生产过程中,需要付出很多时间和成本,如果将复杂化的产品通过几个模块进行组装,就能够同时解决多样化和效率化的问题。
但是,模块化本身不过是产品的一项功能,未来制造业将更加重视在通过模块化和封装化的基础上进行系统化,拓展新的应用与服务。如果以系统化为主导,就能相对于“物理”意义上的零部件,获取更多的带有“信息”功能的附加价值。相反,如果不掌控系统的主导权,无论研发出的零部件的质量和功能多么好,也难以成为市场价格的主导者。
三是从“群体”到“个体”的趋势。在发达国家,以规模化为对象的量产制造业将生产基地转移至新兴市场国家,以定制化为重点的多种类小批量制造业渐渐成为主流。同时,消费者本身也将有能力将自己的需求付诸生产制造。也就是说,“大规模定制”随着以3D打印为代表的数字化和信息技术的普及带来的技术革新,将制造业的进入门槛降至最低,不具备工厂与生产设备的个人也能很容易地参与到制造业之中。制造业进入门槛的降低,也意味着一些意想不到的企业或个人将参与到制造业,从而有可能带来商业模式的巨大变化。
“个性化”首先是美国大力推进的。在美国的文化背景下,个性要比组织色彩强烈。制造业的“个性化”趋势不仅仅是美国制造业回归,还将带动旧金山等大城市制造业的兴盛,一些专注于通过信息技术使得生产工程高效化、专业性的小规模手工制作的制造业将在市区内盛行,它们根据消费者的需求进行柔性的定制化服务,凭借独特的设计,与大量生产形成差异化竞争。
四是互联制造。随着信息技术和互联网、电子商务的普及,制造业市场竞争的新要求出现了变化。一方面,要求制造业企业能够不断地基于网络获取信息,及时对市场需求做出快速反应;另一方面,要求制造业企业能够将各种资源集成与共享,合理利用各种资源。
互联制造能够快速响应市场变化,通过制造企业快速重组、动态协同来快速配置制造资源,提高产品质量,减少产品投放市场所需的时间,增加市场份额。另外,作为一个未来的潮流,工厂将通过互联网,实现内、外服务的网络化,向着互联工厂的趋势发展。
美国因为有Google、Apple、IBM等IT巨头和无数的IT企业,所以在大数据应用上较为积极,非常重视对社会带来新的价值。Google不断将制造业企业收购至麾下,就是希望掌握主导权。同时,作为美国大型制造业企业的一个代表,GE公司也开始加强数据分析和软件开发,从车间采集数据,进行解析,提供解决方案,开拓新的商业机会。德国将“工业4.0”视为国家战略,将工厂智能化视为国家方针。通过信息技术,最大限度的发挥工厂本身的能力(表1)。
把“两化”深度融合作为主要着力点。工业和信息化部成立以来,一直致力于推进“两化融合”工作,通过信息化的融合与渗透,对传统制造业产生革命性影响。“工业4.0”本质上是由信息技术引发的,与我国的“两化融合”有异曲同工之处。在未来制造业中,我们应该将“两化深度融合”作为主要着力点,进一步继续加快推进信息化、自动化和智能化。
首先,研究部署信息物理系统(CPS)平台,实现“智能工厂”的“智能制造”。智能制造已成为全球制造业发展的新趋势,智能设备和生产手段在未来必将广泛替代传统的生产方式。而信息物理系统(CPS)将改变人类与物理世界的交互方式,使得未来制造业中的物质生产力与能源、材料和信息三种资源高度融合,为实现“智能工厂”和“智能制造”提供有效的保障。美国、德国等世界工业强国都高度重视信息物理系统的构建,加强战略性、前瞻性的部署,并已然取得了积极的研究进展。而我国目前的制造业发展仍然以简单地扩大再生产为主要途径,迫切需要通过智能生产、智能设备和“工业4.0”理念来改造和提升传统制造业。
其次,推动制造业向智能化发展转型的同时,同步推动制造业的模式和业态的革新。主要体现在,从大规模批量生产向大规模定制生产的革新、从生产型制造向服务型制造的革新、从集团式全能型生产向网络式协同制造的革新、从两化融合向工业互联网的革新。
1建筑造价管理重要性
建筑工程造价管理工作是现代社会建筑建设工程中的重要组成部分,也是保证建筑工程经济效益的关键环节。对建筑工程的造价进行控制能够促使工程投资项目造价管理人员在正式开始之前对其进行全面的方案制定、方案设计审核,全方位、多角度、多层次的了解建筑工程项目详情,对项目工程进行动态监控,从而有效掌握建筑工程项目的利润情况,将其经济收益控制在一定程度之内,避免产生不必要的经济损失。
2建筑造价管理原则
2.1设计为重点原则
建筑工程造价管理人员在开展工程造价管理工作时,要注意严格遵循“设计为重点原则”,在将工程造价管理贯穿整个项目进程的同时,引入工程设计,并在工程设计阶段对建筑工程进行造价成本控制。工程设计是建筑工程造价管理全过程的第一关,若在设计阶段强化工程造价控制,就能结合建筑工程的实际情况,优化选择合理的施工工艺、施工材料、设备,提高建筑工程性价比,充分体现建筑造价管理的经济效益控制优势。造价管理人员要重视设计阶段的造价控制,通过此阶段的造价控制提升建筑工程施工质量。
2.2主动控制原则
建筑工程造价管理人员在开展工程造价管理工作时,要注意遵循“主动控制原则”。主动控制原则,就是指需要造价管理人员对工程造价进行预算管理,将可能出现的各种风险及情况均纳入预案计划中,并根据可能出现的风险因素制定相应的预防措施,从而保证建筑工程进展顺利,避免偏离原有目标。
3建筑造价管理提升工程经济效益措施
3.1招标环节造价管理
针对建筑工程建设单位,要提升建筑工程的经济效益,就要做好建筑工程招标环节的造价管理。建设单位造价管理人员在建筑工程的招投标阶段要对工程设计招标、工程施工招标等文件进行严格管理,并对项目中重要物资的招投标行为进行审查。造价管理人员要严格审核施工单位的施工资质及其相关经验,并采取实地考察的方式进行审核,从而避免出现招录到信用较差施工单位的情况。造价管理人员还要全面掌握建筑工程项目的造价成本,防止投标单位恶意竞标。另外,造价管理人员还可以在管理工作中采用“工程量清单计价”模式,就是通过统一的计量计算规则提供工程量清单,并由投标人根据自身实际情况与市场情况进行报价竞标,这种方法也可以有效控制工程成本,提高建筑工程的经济效益[2]。
3.2做好预算和决算管理
针对建筑工程施工单位,造价管理人员要提升建筑工程的经济效益,就要做好预算和决算工作。首先,造价管理人员要对建筑工程所需的主材、辅材及其他耗材进行统计,保证材料采购数量符合施工需求,避免出现采购数量过多或不足的情况,减少材料采购资金的浪费。然后要提前统计、预估建筑工程施工人员的劳务费用,控制施工人工费;造价管理人员要结合建筑工程施工现场情况、施工难度,依据现阶段市场平均价格和单位内部人员的标准工作进行计算。最后,造价管理人员要在预算与决算阶段对建筑工程施工可能产生的设备使用与维护费用进行计算;造价管理人员要根据单位本身的施工机械设备情况,计算施工机械费用在使用过程中产生的摊销费用及租赁费用,并综合施工情况核定需要租赁的机械设备数量,优化机械设备管理方案,从而实现控制造价成本的目的[1]。
3.3施工环节造价管理
针对建筑工程施工单位,造价管理人员要通过增强建筑造价管理工作提升建筑工程的经济效益,还要做好施工环节的造价管理工作。造价管理人员要结合现阶段的市场发展形势,对施工单位的施工费用进行预估,从实际需求的角度出发,在合理范围内降低施工费用,并加强对施工环节的管理,对建筑工程施工劳务成本、施工现场资源成本进行管理,让施工单位定期上报每天施工费用消耗明细,推动建筑工程施工造价管理规范化发展。此外,造价管理人员要认真审核变更明细,并严格规定变更条件,避免出现随意修改施工方案的情况出现,确保施工预算与原方案的顺利推进。从而避免不必要的成本浪费。
3.4竣工环节造价管理
针对建筑工程施工单位,造价管理人员要从竣工环节入手,提高竣工环节的造价控制程度,认真、严谨的开展工程审核工作,保证建筑工程的工程量,根据承包合同、施工图纸、变更计划及现场签证等资料对已完成的工作量进行计算,并进行核算,杜绝出现施工单位谎报施工量的情况出现。造价管理人员还要做好套价工作,熟悉工程定额书中的详细单价和具体施工内容,并结合工程预算对其进行定额套价。
4结语
总而言之,建筑工程造价管理工程是一项极为复杂的、专业的、系统的工程管理工作,要想加强建筑工程造价管理工作不是一朝一夕能够完成的,也不是针对某一环节工作就能够达到的。造价管理人员要想通过强化建筑工程造价管理工作提升建筑工程的经济效益,就要明确建筑工程经济效益的主要来源,不断提升自身管理水平,引进科学管理体系,全面开展造价管理工作,从而有效控制建筑工程各个环节成本,有计划的提升建筑工程的经济效益。
【管理学博士论文参考文献】
[1]李康.增强建筑造价管理提升工程经济效益[J].华东科技(综合),2018(003):53.