时间:2022-02-19 08:43:50
序论:在您撰写力学性能论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
近年来随着经济社会的发展和人们生活水平的不断提高,使得社会对物质产品消费不断提高,从而促进了作为商品重要包装形式的瓦楞纸板行业迅速发展,瓦楞纸板的需求量十分巨大。商品在流通过程中,瓦楞纸板这类纸质包装材料受到流通环境温度、湿度制约,其力学性质和动力学特性也直接受到环境的影响[1]。所以要求产品包装必须满足流通运输环境要求,保证产品的安全可靠性。在实际的流通运输环境下,引起瓦楞纸板力学性能变化的影响因素很多,温度和湿度的变化影响尤其显著,直接影响到瓦楞纸板包装物品的安全性和使用时限。王俊丽、李广生、肖文娟、程小琴等[2-5]通过在不同的含水率条件下瓦楞纸板力学性能的测定,得出瓦楞纸板的力学性能随纸板含水率的增加而下降。DongMeiWang[6]等人在不同温度下,研究温度对纸蜂窝夹层板的含水率的影响,结果表明瓦楞纸板的含水率随着温度的升高而下降;随着温度的变化,瓦楞纸板的含水率发生了变化,最终影响到瓦楞纸板的力学性能。在实际运输过程中,瓦楞纸板的力学性能在不同温湿度环境下的变化比较显著,但目前对瓦楞纸板在模拟运输环境下力学性能的研究却鲜有报道。当前,瓦楞纸板的种类繁多,不同类型的瓦楞纸板会有不同的力学性能。三层UV型瓦楞纸板的需用量非常大,已在精细产品、中小型和高档包装领域逐渐扩展,特别是在一些精密仪表、中小型家电、玻璃陶瓷器皿、医药、干鲜果品、饮料及礼品等的包装上体现得尤为明显。为了更好的解决三层UV型瓦楞纸板实际使用过程中出现的问题,为企业提供更多实际可行的借鉴方案,很有必要的对三层UV型瓦楞纸板的力学性能进行深入研究。
2材料与方法
2.1材料与仪器
实验材料:三层UV型瓦楞纸板,A型,克重为180g/cm2,南宁新大海纸箱厂。实验仪器:17-76型抗压强度测试仪,美国TMI仪器制造公司;LP-80U型恒温恒湿实验试验箱,广东宏展科技有限公司。
2.2实验方法
选择在流通环境下比较常见的温湿度。一般在车厢里面或集装箱内的温度为10℃-50℃,湿度为30%-80%。结合实验室相关条件,相对湿度选取40%、50%、60%、70%、80%、90%,100%的7个水平。温度选取20℃、25℃、30℃、35℃、40℃、45℃、50℃的7个水平。裁切100mm×25mm(长×高)的试样,试样采用GB/T22906.2-2008《纸芯的测定第2部分:试样的温湿处理》[7]进行试样温湿度处理。平压强度采用GB/T22906.9-2008《纸芯的测定第9部分:平压强度的测定》[8];边压强度采用GB/T6546-1998《瓦楞纸板边压强度的测定法》[9],粘合强度采用GB/T6548-2011,《瓦楞纸板粘合强度的测定》[10]。
3结果与讨论
3.1温湿度对瓦楞纸板力学性能的影响
3.1.1温湿度对瓦楞纸板平压强度的影响
不同湿度条件下,随着温度升高,各条曲线呈上下波动趋势,波动值在20℃-30℃和40℃-50℃范围内变化不大,在30℃-40℃范围内的变化大,说明三层UV型瓦楞纸板平压强度在温度为30℃-40℃时的影响大;引起这一变化的原因是在30℃-40℃时,在各相对湿度下,瓦楞纸板内的纤维之间容易散失水分,瓦楞纸板的含水率不高,纸板纤维间的氢键力作用比较大。相对湿度为80%时的曲线波动最大,说明温度对相对湿度为80%时的影响是最大的;相对湿度为100%时的曲线波动最小,说明当相对湿度达到最大值时,在各个温度条件下瓦楞纸板内的含水率都非常高,平压强度在此湿度下随着温度的变化比较小。当相对湿度为40%,温度在35℃-45℃时,瓦楞纸板的平压强度达到最大值,这是因为纸板内纤维之间的水分含量比较低,纤维之间的作用力比较大。不同温度时,当瓦楞纸板的相对湿度增加到70%-80%,瓦楞纸板的平压强度下降明显加快。影响瓦楞纸板平压强度主要因素是纤维的作用力,纤维间水分的含量直接影响着纤维间的相互作用力,当环境相对湿度增加到70%后,纸板纤维润胀达到最大程度,纤维间的氢键就会被破坏,使瓦楞纸板的平压强度下降。
3.1.2温湿度对瓦楞纸板边压强度的影响
不同湿度条件下,随着温度升高,各条曲线呈上下波动趋势,波动值在20℃-30℃范围内,变化大,在30℃-50℃范围内,波动值小。说明三层UV型瓦楞纸板边压强度在低温时容易受到温度变化的影响;引起这一变化的原因是当温度升高到25℃左右时,纸板纤维之间的作用力变小造成的;相对湿度为90%和100%时的曲线波动最大,说明在高湿度环境下,瓦楞纸板内随着温度的升高水分散失严重;从图可看出边压强度最大值范围出现在相对湿度为40%温度在35℃-45℃之间,这是因为在低湿高温的环境下,纸板内的水分含量低,水分对纸板结构力学造成的影响比较小,所以纸板结构力比较大。边压强度随着相对湿度的增大不断地变小。不同温度时,当瓦楞纸板湿度增加到80%,瓦楞纸板的边压强度下降更快,说明当瓦楞纸板的湿度到达80%以上时,瓦楞纸板的平压强度受湿度的影响加大,若湿度继续增加,瓦楞纸板就可能失效,在运输中就丧失了作为运输包装的保护产品的功能。
3.1.3温湿度对瓦楞纸板粘合强度的影响
不同湿度条件下,随着温度升高,各条曲线呈上下波动趋势,波动值在30℃-40℃范围内,变化比较大,说明三层UV型瓦楞纸板粘合强度对高温的影响是比较明显的,粘合强度主要的影响因素是粘合剂,在此温度范围内,水分的散失比较慢,导致粘合剂的含水量大,降低了粘合剂的粘合力。从图3还可以看出,随着湿度的增大,粘合强度都在不断下降。粘合强度的最大值范围出现在相对湿度40%,温度为40℃-50℃时,在高温低湿环境下,粘合剂的含水量比较少,粘合剂的粘合力比较大。当相对湿度大于70%时,三层UV型瓦楞纸板的粘合强度下降速率非常大,可能由于相对湿度大于70%时,水分增加较快,瓦楞纸板的粘合剂开始慢慢变软,粘合剂的粘合力不断下降,使得瓦楞纸板的粘合强度下降的速率变大。综合图1-图3所示,在温度为35℃-45℃的运输条件下,当相对湿度为40%时,三层UV型瓦楞纸板的三种力达到相对的最大值,在此条件下最适合物品的运输,可以更好的保护产品。对三层UV型瓦楞纸板力学性能影响比较大的是相对湿度,温度次之。
4结论
1.1原材料
熟料:采用华新水泥厂的新型干法熟料(石膏外掺),其物理力学性能见表1;硬石膏:其化学成分见表2;脱硫渣:采用武钢的干法烟气脱硫渣,其化学成分见表3;粉煤灰:采用青山热电厂的二级粉煤灰;矿粉:取自武钢粉磨厂,其SO3含量为0.35%;标准砂:采用的标准砂是厦门ISO标准砂。
1.2方法
水泥标准稠度用水量、凝结时间和安定性检验按照GB/T1346—2001《水泥标准稠度用水量、凝结时间、安定性检验方法》[6]进行。水泥胶砂流动度按照GB/T2419—1999《水泥胶砂流动度测定方法》[7]进行。水泥胶砂强度按照GB/T1767l—1999《水泥胶砂强度检验方法》[8]进行。水泥胶砂干缩试验按照JC/T603—2004《水泥胶砂干缩试验方法》[9]进行。
1.3试验配合比
试验中控制熟料掺量为35%,矿粉掺量为30%,通过调节脱硫渣和硬石膏掺量,探讨了脱硫渣及硬石膏掺量的变化对复合水泥性能的影响规律。其中,在脱硫渣和硬石膏复掺试验中,脱硫渣与硬石膏中所含SO3比例为1∶1。
2结果与讨论
2.1硬石膏(未掺脱硫渣)对水泥性能的影响
从A-1到A-3的试验结果中可以看出:随着石膏掺量的增加,水泥标准稠度用水量逐渐增大;水泥的凝结时间有所延长,SO3含量的变化从3.0%~4.0%,水泥初凝时间增加近60min,终凝时间增加近30min;此外,每组水泥的初凝和终凝时间相差60min左右。作出水泥各龄期力学强度随石膏掺量变化趋势图,见图1。从图1中可知,该组水泥试样的3d和28d的抗折强度均随着硬石膏掺量的增加而逐渐增大,其抗压强度与抗折强度有着相同的规律。
2.2脱硫渣(未掺硬石膏)对水泥性能的影响
从B-1到B-3的试验结果中可以看出:随着脱硫渣掺量的增加,水泥的标准稠度用水量呈逐渐增大的趋势,水泥凝结时间也逐渐延长,同样,SO3含量的变化从3.0%~4.0%,水泥的初凝及终凝时间均增加近150min;此外,每组水泥的初凝和终凝时间差达到180min左右。与A-1到A-3的试验结果对比发现,SO3含量相同两组试验,掺脱硫渣的水泥试样的标准稠度用水量、初凝及终凝时间均要大于掺硬石膏的水泥试样,并且随着SO3含量的增加,水泥凝结时间延长的幅度也随之加大。当SO3含量都为3.0%时,两者初凝相差10min,终凝相差131min;SO3含量都为3.5%时,两者初凝相差25min,终凝相差137min;SO3含量都为4.0%时,两者初凝相差103min,终凝相差241min。由此可见,脱硫渣能够明显延缓水泥的凝结时间,并且其缓凝效果要强于硬石膏。脱硫渣对水泥的缓凝作用,增大了水泥初凝和终凝的时间间隔,并且合理掺量的脱硫渣对水泥的缓凝效果能满足相应规范对水泥凝结时间的要求。作出水泥各龄期力学强度随脱硫渣掺量变化趋势图,见图2。从图2中可知,该组水泥试样3d抗折、抗压强度随着脱硫渣掺量的增加先降低后增大,而28d抗折、抗压强度则逐渐增大,并且28d强度值比较接近,脱硫渣掺量从9.2%增加到13.7%,28d抗压强度提高了6.01%。但与A-1到A-3的试验结果对比可发现,相同SO3含量的两组试验,掺有脱硫渣的水泥试样的3d抗折、抗压强度均低于掺硬石膏的水泥试样。与A-1试样相比,B-1试样的3d抗折、抗压强度分别降低11.1%和10.9%;与A-2试样相比,B-2试样的3d抗折、抗压强度分别降低34.1%和40.2%;与A-3试样相比,B-3试样的3d抗折、抗压强度分别降低38.6%和43.2%;然而掺有脱硫渣的水泥试样28d抗压强度值却偏高,与A-1试样相比,B-1试样的28d抗压强度提高了36.2%;与A-2试样相比,B-2试样的28d抗压强度提高了32.8%;与A-3试样相比,B-3试样的28d抗压强度提高了18.6%。由此可见,与硬石膏相比,脱硫渣的掺入对水泥早期强度的发展不利,且随着脱硫渣掺量的增加,3d强度降幅增大;但脱硫渣有利于水泥后期抗压强度的增长。
2.3脱硫渣和硬石膏复掺对水泥性能的影响
从C-1到C-3的实验结果中可以看出:随着SO3含量的增加,水泥试样的标准稠度用水量逐渐增大,但水泥凝结时间相近,变化不明显,水泥初凝时间将近10h,终凝时间到达12h左右,水泥凝结时间明显偏长。由此说明脱硫渣与石膏复掺时会出现更强的缓凝效果,水泥凝结时间大幅延长。作出水泥各龄期力学强度随SO3含量变化趋势图,见图3。从图3中可知,该组水泥试样3d抗折、抗压强度随着SO3含量的增加先降低后增大,28d抗折强度逐渐增大,28d抗压强度却逐渐降低。但是,在相同SO3含量的情况下,与A组实验进行比较发现,其变化规律与B组和A组比较结果的变化规律相似,即C组水泥试样3d强度低于A组试样,但28d抗压强度仍然高于A组试样;与A-1试样相比,C-1试样的28d抗压强度提高了45.2%;与A-2试样相比,C-2试样的28d抗压强度提高了36.2%与A-3试样相比,C-3试样的28d抗压强度提高了13.2%。通过上述分析可知,脱硫渣和硬石膏进行复掺,使复合水泥的凝结时间大幅延长,其凝结时间已经不能满足复合水泥对凝结时间的要求,但其对水泥强度的影响规律和单掺脱硫渣的水泥类似。因此,两者复掺主要对水泥的凝结时间影响较大,可能是由于两者掺配比例不合理的原因。
2.4脱硫渣对水泥干缩性能的影响
为了研究脱硫渣对水泥干缩性能的影响,本次试验中选取A-1、B-1、B-2及B-3四组配比,测定了水泥砂浆的不同龄期的干缩率,试验结果见图4。从图4中可以看出,4组水泥试样的干缩率均随着龄期的增加而增大,在养护的初期阶段,水泥干缩率的增长速率较快,养护14d后,水泥干缩率的增长速率降低;比较A-1和B-1可知,在相同SO3含量的情况下,掺有脱硫渣的水泥试样在各龄期的干缩率均低于掺硬石膏的水泥试样;从B-1到B-3可看出,水泥试样各龄期的干缩率随着脱硫渣掺量的增加而降低。由此可见,脱硫渣的掺入能明显改善水泥的干缩性能,且随着脱硫渣掺量的增加,改善效果越好。
2.5脱硫渣对水泥缓凝及补偿收缩效应机理分析
脱硫渣中Ca(OH)2的含量较高,这使水泥在水化初始即形成Ca(OH)2的高度过饱和液相,对钙矾石生成影响最大的Ca2+、OH-浓度与普通水泥相比要大的多,在水化初始形成钙矾石的诸离子的溶度积K即超过了形成钙矾石所需的临界值Ksp,钙矾石的析晶速率更快,晶体尺寸更小,生成更具有屏蔽作用的胶体状钙矾石覆盖在水泥颗粒表面,延缓了水泥特别是C3A的水化[10]。而CaSO3·1/2H2O与C3A体系在纯水中水化30min时即可生成胶体状的C3A·CaSO3·11H2O覆盖在C3A的表面,也可能造成C3A在开始之初水化延缓。由于脱硫渣中同时含有硫酸钙和亚硫酸钙这两种物质,可能由于两者的双重作用效果,使得脱硫渣的缓凝效果要强于硬石膏。袁润章等人研究了矿渣在不同介质下呈现出水硬活性的能力,矿渣通常只有在pH值大于12的碱性环境下才能呈现出一定的胶凝能力,同时CaSO4和Ca(OH)2共同作用下对矿渣的激发效果比Ca(OH)2单独激发的效果更加显著[11]。脱硫渣中含有大量的Ca(OH)2、CaSO4等活性激发组分,在大幅度提高水泥水化液相碱含量的同时,不仅可以促进矿渣和粉煤灰活性更早地被激发,还能大大提高矿渣和粉煤灰的二次水化反应程度,进而提高水泥后期强度增长率[12]。通过掺入脱硫渣能促进水泥水化过程中钙矾石晶体的生成,通过钙矾石的吸水肿胀和结晶膨胀作用来达到微膨胀的作用,显著改善水泥的收缩和抗裂性能。
3结论
试验原料为真空冶炼并锻造而成的锻坯,首先在锻坯上截取直径为4.0mm、长10.0mm的圆柱试样,采用热膨胀仪测得合金钢材料的A1和A3分别为710℃和930℃。采用二辊轧机将1200℃保温90min的锻坯热轧为厚度为3.0mm的热轧板,并对其依次进行酸洗、冷轧,最后得到厚度为1.2mm的双相钢冷轧薄板,其主要化学成分w(%):0.10C、1.35Si、1.88Mn、0.007P、0.0056S,余量为Fe。在冷轧钢板上沿轧制方向截取长220mm、宽60mm双相钢试样,并进行连续退火试验。根据实验测得的A1和A3,确定退火温度分别为735、760、785、810和835℃。将试样加热至退火温度并进行保温处理,保温时间为6min,然后将试样冷却至685℃后淬火到240℃,保温12min后冷却至室温。对工艺参数不同的退火板取样,利用热场发射扫描电子显微镜及EBSD技术对其进行显微组织观察和相结构分析,并采用电子万能试验机对其力学性能按照国标要求进行测试。
2试验结果及分析
2.1显微组织
图1是退火温度为735、760、785、810和835℃时双相钢连续退火后的组织。可以看出,不同温度条件下的退火组织均为马氏体和铁素体,无明显差异。同时发现马氏体(硬相)呈凸起岛状,且均匀分布在铁素体(软相)的晶界上,形成了由软相和硬相组成的双相组织[4]。通过ImagesProPlu和彩色金相图片对不同退火温度下马氏体的体积分数进行定量分析,研究组织中的相构成[5]。统计数据显示,马氏体的体积分数随退火温度的升高由13.8%增加至19.7%,且马氏体岛尺寸增大。这是由于在退火过程中,奥氏体随退火温度的升高逐渐增多;同时,C元素以及其他合金元素的扩散率也增大,奥氏体的尺寸增大。大部分奥氏体组织在淬火处理后转变为马氏体,增加了马氏体的体积分数以及尺寸。由图1还可以看到,马氏体岛中心位置颜色较暗,而与铁素体交界区域出现了光亮圈。这是因为C元素的热扩散速率较大,使其在连续退火过程中扩散较充分,使铁素体与奥氏体中的碳浓度达到了平衡状态。而Mn元素在奥氏体组织中的扩散速率小于其在铁素体组织中的扩散速率,导致铁素体与奥氏体的交界区域成为富Mn区,而淬透性与Mn的含量呈正比例关系,不同淬透性导致其内部较暗,而与铁素体的交界呈现光亮圈。
2.2相结构
退火温度分别为735℃和785℃时,汽车用高Si双相钢材料连续退火后的EBSD图像如图2所示。(采用黑色标记残余奥氏体,其他颜色标记马氏体和铁素体)可以看出,不同退火温度条件下双相钢组织中均得到了分布于铁素体晶界上的粒状残余奥氏体组织。这是由于双相钢材料中Si元素的含量较高,在退火过程可促进铁素体中C元素向奥氏体扩散,提高了奥氏体相中的含碳量;同时在冷却过程中Si元素还可以对碳化物的析出起到抑制作用,降低了奥氏体相中的碳损失。高碳奥氏体相的Ms点较低,因此具有较高的热稳定性,在室温条件下稳定存在并被保留。经测量,残余奥氏体的晶粒直径均小于1μm,稳定性较高。图3给出了双相钢在760℃时退火后的透射照片。可以看出,部分残余奥氏体组织呈薄膜状,分布于板条马氏体组织中。薄膜状奥氏体由于尺寸较小,同时周围包裹了马氏体束,提高了其成核所需表面能,因此增加了其向马氏体转变的难度。
2.3力学性能
表1给出了不同退火温度下双相钢连续退火后的力学性能。可知,随着退火温度升高,试验钢抗拉强度呈现先升高后降低。这是由于当退火温度高于735℃后,马氏体的体积分数开始急剧增加,抗拉强度也随之大幅提高;当退火温度超过785℃后,马氏体的体积分数不再增加,但在冷却阶段生成的铁素体体积分数逐渐增加,相比原始铁素体,新生铁素体的含碳量较高,导致马氏体的含碳量下降,抗拉强度也随之降低。传统低Si双相钢材料的抗拉强度为630MPa时,伸长率为23.0%。相比之下,退火温度为785℃时高Si双相钢材料的综合力学性能较高,抗拉强度为702MPa时,伸长率为25.5%,均高于传统低Si双相钢。伴随退火温度的升高,试验钢的屈强比未发生明显变化,最大为0.58,最小为0.44。传统低Si双相钢材料的屈强比为0.47,相比之下,除735℃退火外,双相钢的屈强比较低,因此其成型性能较好。这是由于钢中的Si元素不仅可以降低铁素体中C元素的含量,还可以对冷却及时效过程中碳化物的析出起到抑制作用,使C元素聚集在奥氏体中;此外,由于新生铁素体出现的无沉淀区降低了双相钢的屈服强度,因此其屈强比也随之下降。
3结论
面对高技术时代对高性能钛合金材料日益紧迫的要求,非连续增强钛基复合材料因其具有的高比强、高比刚度、耐高温和耐蚀性能已成为研究的热点。人们对其制备工艺、微结构、力学性能等进行了一系列的研究,而这些研究的主要目标为外加法制备的钛基复合材料。而本研究则采用原位合成工艺制备非连续增强的钛基复合材料。与外加法比较,原位合成法因其工艺简单、材料性能优异,在技术和经济上更为可行。增强体的原位合成,避免了增强体的污染问题,也避免了熔铸过程中存在的润湿性问题,有利于制备性能更好的复合材料。然而,为了低成本高效制备高性能的钛基复合材料尚有许多问题需要解决。因此,从理论和实验上研究这些问题,对低成本高效制备高性能的钛基复合材料具有非常重要的理论和实际意义。
针对金属基复合材料发展应用中的关键问题??成本和性能,本文开发设计了新型的钛基复合材料的制备工艺,可以低成本高效制备性能优异的钛基复合材料。即可利用钛与碳化硼、硼及石墨之间的自蔓燃高温合成反应,采用普通的钛合金冶炼工艺制备出单纯TiB晶须、单纯TiC颗粒增强或TiB晶须和TiC粒子混杂增强的钛基复合材料。为了拓展钛基复合材料的应用领域,为制备高性能的钛基复合材料打下坚实的基础,本文的研究主要包括以下几个方面工作:
1、研究了利用钛与石墨、硼及碳化硼之间的反应制备TiB和TiC增强钛基复合材料的原位合成机理。利用热力学理论计算了钛与石墨、硼、碳化硼反应的Gi自由能DG和反应生成焓DH,结果表明:各个反应的Gi自由能DG值都为负值,说明在热力学上上述反应是可行的。虽然在热力学上可以利用钛与碳化硼之间的化学反应合成TiB2和TiC增强体,但从化学平衡考虑,TiB2不能稳定存在于过量钛中,因此能够稳定存在于普通钛合金中的增强体为TiB和TiC。上述反应都为高放热的反应,从理论上讲绝热温度都大于自蔓燃高温合成的判据,表明反应能自发维持。
2、利用非自耗电弧炉和自耗电弧炉经普通的钛合金铸造工艺制备出单纯TiB晶须、单纯TiC颗粒增强或TiB晶须和TiC粒子混杂增强的钛基复合材料。X射线衍射分析结果表明:原位合成的增强体为TiB、TiC。这些增强体分布非常均匀,主要呈现为短纤维状、树枝晶状和等轴或近似等轴状。电子探针和带能谱的扫描电镜分析结果表明:短纤维状增强体为TiB,而树枝晶状和等轴或近似等轴状增强体为TiC。实验结果与理论分析一致,这为原位自生钛基复合材料的工业化生产提供了依据。
3、研究了原位合成钛基复合材料增强体的生长机制,结果表明:增强体的生长机制与凝固过程及增强体的晶体结构密切相关。原位合成的增强体以形核与长大的方式从熔体中析出而长大。对于原位合成TiB和TiC混杂增强的钛基复合材料,经历了析出初晶、二元共晶和三元共晶三个阶段。由于不同的晶体结构,增强体TiB与TiC形成不同的生长形态。TiB具有B27晶体结构,易于沿[010]方向生长长成短纤维状,而且TiB横截面的形状呈多边形,其晶面主要由(100)、(10)和(101)组成。同时,在TiB的(100)面上容易形成层错。而TiC具有NaCl型对称结构,容易长成树枝晶状、等轴状和近似等轴状。发现原位合成的增强体TiB容易在(100)面上形成高密度的层错,层错的形成与增强体的晶体结构、生长机制有关,同时也有利于降低增强体与基体合金界面的晶格畸变。而原位合成增强体TiC的晶格比较完整,偶尔在(111)面上形成孪晶,该孪晶结构在增强体形核与长大的过程中形成。
4、研究了合金元素铝的加入对原位合成钛基复合材料微结构及力学性能的影响。合金元素铝的加入,并不改变复合材料的物相组成,也不改变复合材料的凝固过程,但由于合金元素的存在,阻碍了增强体的形核与长大过程,导致形成的TiB和TiC初晶更为细小,尤其是使TiC增强体易于形成等轴状。合金元素铝不仅固溶强化了基体合金,而且细化增强体也有利于提高复合材料的力学性能。
5、利用透射电镜、高分辨透射电镜对原位合成(TiB TiC)/Ti复合材料界面微结构进行研究和分析,发现两种增强体与基体的界面均为清洁界面,为直接的原子结合、界面结合状况良好。TiC增强体与基体合金没有确定的位相关系,而TiB增强体与基体合金存在以下位相关系:、、(0002)Ti//(001)TiB和以及、(0002)Ti//(200)TiB和。该位相关系在凝固过程中形成,与增强体的晶体结构及基体合金的晶体结构密切相关,形成该位相关系有利于降低增强体与基体合金界面的晶格畸变能。
6、研究了铸态钛基复合材料和热锻后高温钛基复合材料的力学性能。由于原位合成增强体的加入,钛基复合材料的力学性能与相应基体合金比较有了明显的提高,在增强体含量为8%时,其弹性模量E、屈服强度s0.2和抗拉强度分别达到131.2GPa,1243.7MPa和1329.8MPa,与基体合金Ti6242比较分别提高了19.3,47.4和45.5。其强化机理主要来源于增强体承载、晶粒细化及高密度位错的形成。石墨的加入,形成更多等轴状、近似等轴状TiC粒子有利于提高复合材料的室温性能,这与短纤维状TiB的存在导致复合材料低应力断裂有关。
7、研究了原位合成钛基复合材料的高温瞬时拉伸性能。在600oC、650oC和700oC的抗拉强度分别超过800MPa,750MPa和650MPa,与高温性能较好的IMI834合金比较,在600oC的抗拉强度提高幅度超过25。随着温度的提高,其屈服强度、抗拉强度降低,塑性提高,但与基体合金比较高温强度有了明显的提高。断口分析表明:低温时,裂纹由增强体断裂引起,而在高温时裂纹最先在短纤维晶须TiB的端面上形核,然后裂纹扩展到基体合金中,最后导致材料失效。说明低温时,增强体承载对提高复合材料的力学性能非常有利,而在高温时,其强化作用主要由增强体与位错的交互作用引起。位错容易在短纤维状晶须TiB的端面处塞积,形成裂纹源导致材料失效。因此与等轴状及近似等轴状增强体TiC比较,短纤维状增强体TiB对复合材料高温力学性能的强化效果要低一些。这也是石墨的加入形成等摩尔的TiB和TiC增强体有利于提高复合材料高温性能的主要原因。
8、研究了原位合成钛基复合材料的高温蠕变性能和持久断裂性能。原位合成钛基复合材料的高温蠕变经历了典型的蠕变变形的三个阶段。蠕变持久强度与基体合金比较有了明显的提高。持久强度与温度及载荷密切相关,温度和载荷的提高都降低复合材料的高温蠕变和高温持久性能。石墨的加入形成更多的TiC粒子,同样有利于提高钛基材料的持久强度。在高温、持久载荷作用下,材料的失效仍然主要由短纤维端面处形成裂纹而导致材料失效引起。
本研究首先从理论上分析了原位合成TiB、TiC及TiB和TiC混杂增强钛基复合材料的原位合成机制,并以此为基础开发出了一种新型钛基复合材料加工工艺。利用该工艺钛合金生产厂家可以在不改变设备和工艺的条件下,低成本高效制备高性能的钛基复合材料。而采用该原位合成工艺制备复合材料的性能是可设计和可控制的,针对不同的应用条件,可以设计不同成分的基体合金及不同含量、不同配比增强体的复合材料以满足不同的需求。从合金相图、增强体晶体结构及凝固理论相结合分析了原位合成增强体的生长机制、生长形态、分布状态以及界面微区特征。研究了钛基复合材料的微观组织对钛基复合材料力学性能的影响规律。这些研究为以后制备高性能的钛基复合材料和拓展 钛基复合材料的应用领域打下了坚实的理论基础和为批量生成提供了实用途径。近两年来,研究成果引起了国家航空航天部门的关注,国家“十五”军工重点课题和航天支撑基金、航天创新基金课题获得了批准。并将用于我国的先进战略导弹XX-2改,战术导弹XX-19及新一代洲际导弹和潜地导弹的构件。鉴于该技术在国防军工方面具有的战略意义以及在民用领域的潜在应用前景,与国内大型钛合金加工企业—宝钢集团五钢有限公司开展产业化研究,完成了该材料的中试过程,实现了新型钛基复合材料的工业化生产。研制开发的材料近期将在国家战略、战术武器、宇宙飞船等方面得到验证和应用。并将逐渐推广应用于民用领域,为国民经济的发展作出贡献。
关键词非连续增强钛基复合材料,原位合成,生长机制,凝固,晶体结构,微观结构,力学性能,位向关系,界面结构
Fabrication,MicrostructureandMechanicalPropertiesofinsituSynthesizedTitaniumMatrixComposites
ATRACT
Duetoincreasingrequirementfortitaniumalloywithhighpropertiesinhightechnologyera,discontinuouslyreinforcedtitaniummatrixcompositesownthefollowingadvantages:highecificstrength,highecificmodulus,highelevatedtemperatureproperty,wearresistanceandlowfabricatingcost,sotheyhavebecometheresearchhotot.Theproceingtechnique,microstructureandmechanicalpropertieshavebeenexteivelystudied.However,themainaimisdiscontinuouslyreinforcedtitaniummatrixcompositepreparedbytraditionaltechniquesuchaspowdertechnologyandliquidmetallurgy,wheretheceramicparticlesaredirectlyincorporatedintosolidorliquidmatricesreectively.Inthispaper,paredwithtraditionaltechnique,insitutechniqueownthefollowingadvantages:thetechniqueisverysimpleandthepropertiesareexcellent,soitiseasiertofabricatetitaniummatrixcompositesintechnologyandeconomic.Theinsitusynthesisofceramicparticleavoidsthepollutionofreinforcementsandwettabilityexistingincastingtechnique,soitisvaluabletofabricatetitaniummatrixcompositeswithbetterproperties.However,therearestillquitealotofproblemstoberesolvedinordertofabricatetitaniummatrixcompositeswithhighpropertiessimplyandatlowfabricationcost.Therefore,theresearchontheseproblemsintheoryandexperimentisveryimportant.
Itiswellknownthatthekeyproblemindevelopmentandalicationofmetalmatrixcompositesiscostandproperty.Anewtechniquehasbeendesignedtoproducetitaniummatrixcomposites,inwhichitispoibletofabricatetitaniummatrixcompositeswithhighpropertiessimplyandatlowfabricationcost.TitaniummatrixcompositesreinforcedwithTiBwhisker,TiCparticleorTiBwhiskerandTiCparticle,wereproducedbycommontitaniumalloycastingtechniqueutilizingtheself-propagationhigh-temperaturesynthesisreactiobetweentitaniumandboron,graphite,B4C.Inordertodeveloptheutilizationareaoftitaniummatrixcompositesandmakebasisforproducingtitaniummatrixcompositeswithhighproperties,thefollowingworkshavebeendeveloped.
1.InsitusynthesismechanismoftitaniummatrixcompositesreinforcedwithTiB,TiCorTiBandTiCutilizingthereactiobetweentitaniumandboron,graphite,B4Chavebeeninvestigated.GifreeenergyDGandformationenthalpyDHofreactiobetweentitaniumandboron,graphite,B4Cwerecalculatedbythermodynamictheory.TheGifreeenergyDGofabovereactioisnegative,whichindicatesthattheabovereactioallcantakeplace.ItispoibletosynthesizeTiB2andTiCutilizingthereactionbetweentitaniumandB4C.However,coideringfromchemicalbalance,TiB2cannotexistintitaniummatrixalloystably.Theabovereactioreleasequitealotofheat.Moreover,theadiabatictemperatureisgreaterthanthetheoreticalcriterion,whichindicatesthatthereactioncanbesustainedbyitself,namelyself-propagationhigh-temperaturesynthesisreactioncanoccur.
2.TitaniummatrixcompositesreinforcedwithTiBwhisker,TiCparticleorTiBwhiskerandTiCpart iclehavebeenproducedbynon-coumablevacuumarcremeltingfurnaceandcoumablevacuumarcremeltingfurnace.TheresultsofX-raydiffractionshowthattheinsitusynthesizedreinforcementsareTiBandTiC.Thereinforcementsweredistributeduniformlyinmatrixalloy.Theshapesofreinforcementsareshort-fibreshape,dendriticshapeandequiaxedshapeornear-equiaxedshape.Thereinforcementwithshort-fibreshapeisTiB,thereinforcementwithdendriticshapeandequiaxedshapeornear-equiaxedshapeisTiC.Theexperimentalresultisingoodagreementwiththeoreticalresult,whichprovidesgistforcommercialproductionofinsitusynthesizedtitaniummatrixcomposites.
3.Thegrowthmechanismsofreinforcementsininsitusynthesizedtitaniummatrixcompositeshavebeeninvestigated.Thegrowthmechanismsarecloselyrelatedtosolidificationpathsandcrystalstructures.Thereinforcementsdiersefrommeltandgrowinthewayofnucleationandgrowth.FortheinsitusynthesizedTiBwhiskerandTiCparticlereinforcedtitaniummatrixcomposites,thereinforcementsundertakethefollowingthreestages:primarycrystal,binaryeutecticandternaryeutectic.Duetothedifferentcrystalstructures,TiBandTiCgrowindifferentshapes.TiBisliabletogrowalong[010]directionandformshort-fibreshapeduetoit’sB27crystalstructure.TheshapeofTiBatcrosectionispolygon,thecrystalfacesarecomposedwith(100),(101)and(10).Moreover,thereisstackingfaultinTiBandthestackingfaultislikelytoformat(100)crystalface.TiCwithNaClcrystalstructuregrowsindendritic,equiaxedornear-equiaxedshape.
4.Theeffectsofaluminumadditiononmicrostructureandmechanicalpropertiesofinsitusynthesizedtitaniummatrixcompositeshavebeeninvestigated.Theadditionofalloyingelementaluminumdoe’tchangephasesandadjustthesolidificationpath.However,thealloyingelementhindersthenucleationandgrowthofreinforcementsthatresultinmorefineTiBandTiCreinforcementsandmakeTiCreinforcementsgrowwithequiaxedparticleseasily.Aluminumnotonlystrengthethematrixalloybysolidsolutionstrengthening,butalsoimprovesthemechanicalpropertiesbyrefiningthereinforcements.
5.TheinterfacialmicrostructuresofinsitusynthesizedTiBwhiskerandTiCparticlesreinforcedtitaniummatrixcompositeshavebeenoervedbymeaoftramiionelectronicmicroscopyandhigh-resolutiontramiionelectronicmicroscopy.Theresultsshowthattheinterfacesareveryclean.Theyarebondedwell.ThereisnocoistentcrystallographicrelatiohipbetweenTiCandtitanium.However,therearefollowingcoistentcrystallographicrelatiohibetweenTiBandtitanium:,,(0002)Ti//(001)TiB,and,,(0002)Ti//(200)TiB.Moreover,itiscloselyrelatedtothecrystalstructuresofreinforcementandmatrixalloy.Theformationofabovecrystallographicrelatiohiisvaluabletodecreasetheenergyoflatticestrainbetweenreinforcementandmatrixalloy.
6.Themechanicalpropertiesofcast-titaniummatrixcompositesandhigh-temperaturetitaniummatrixcompositesafterhot-forginghavebeeninvestigated.Duetotheincorporationofinsitusynthesizedreinforcements,themechanicalpropertiesimproveobviouslycomparedwithmatrixalloy.Whenthevolumeofreinforcementsis8,theYoung’smodulusE,yieldstrengths0.2andteilestrengthare131.2GPa,1243.7MPaand1329.8MPa,reectively.Theyimprove19.3,47.4and45.5,reectively.Thestrengtheningmechanismsincludethefollowingfactors:undertakingloadofreinforcements,refinementofgrainsizeandformationofhigh-deitydislocatio.TheadditionofgraphiteformsmoreTiCparticleswithequiaxedornear-equiaxedshapethatisvaluabletoimprovethemechanicalpropertiesoftitaniummatrixcompositesatroomtemperature.ThisisrelatedtoexistingofTiBthatresultfractureofcompositesatlowlevelofaliedstrain.
7.Theultimateteilemechanicalpropertiesoftitaniummatrixcompositesatelevatedtemperaturehavebeeninvestigated.Theultimateteilestrengthsofinsitusynthesizedtitaniummatrixc ompositesat600oC,650oCand700oCare786.1MPa,657.4MPaand564.3MPa,paredwithIMI834alloy,theultimateteilestrengthat600oCimproves23.8.Astemperatureincreases,theyieldstrengthandultimatestrengthdecrease,paredwithmatrixalloy,themechanicalpropertiesathightemperatureofinsitusynthesizedtitaniummatrixcompositesimproveobviously.Theanalysisoffracturesurfacesshowthatcrackareformedduetothefractureofreinforcementsatlowtemperature,whilethecracksarelikelytonucleateattheendsofshort-fibreTiBandpropagatetomatrixalloyathightemperaturesothatcompositesfailure.Theyindicatethatundertakingloadofreinforcementsisvaluabletoimprovethemechanicalpropertiesatlowtemperature.Athightemperature,thestrengtheningeffectresultsfromtheinteractionbetweenreinforcementsanddislocatio.DislocatioareliabletoaccumulateandentangleattheendsofTiBwhiskers,paredwithequiaxedornear-equiaxedTiCparticle,thestrengtheningeffectofTiBwhiskerontitaniummatrixcompositesislowerthanthatofTiC.ThisisalsothemainreasonthattheadditionofgraphitetoformmoreTiCisvaluabletoimprovethemechanicalpropertiesathightemperature.
关键词银幕类型亮度系数增益
银幕是指能接受幻灯、投影、电影等设备所投射出的光束,并在其表面显示图像的白色特制平面,也称之为放映银幕。它对放映画面的亮度、清晰度、对比度、色彩还原和放映声音起着重要的作用。要使银幕达到良好的放映效果,就必须对银幕的种类、光学原理和使用方法等进行充分的研究。
一、银幕的类型
目前常用的银幕按幕面的光学特性分为两大类:反射式银幕和透射式银幕。反射式银幕不受尺寸限制,但受环境光线的影响较大,包括各种规格的手动挂幕和电动挂幕。如升降幕、支架幕、地拉幕、桌幕、金属平面幕、弧面幕等。反射式银幕按照光学原理分为漫散反射银幕和方向性漫散反射银幕。透射型银幕画面整体感较强,不受环境光线的影响,能正确反映图像质量,画面色彩艳丽,形象逼真,包括各种规格的硬质透射幕和软质背投幕。透射式银幕按照光学原理多为方向性漫散透射银幕。
1、漫散反射银幕
漫散反射银幕是放映电影和幻灯投影中常用的一种银幕。其特点是银幕表面能将照射到幕面上的光线,在较大扩散角范围内,均匀分散地反射到各个方向,在银幕的前方任何不同的角度观看银幕影像时,其亮度基本不随方向和角度而改变,散射角大,颜色准确自然。
2、方向性漫散反射银幕
方向性漫散反射银幕的特点是将照射到幕面上的光线经过反射并重新分配后集中于一定方向的角度内,因而在这个角度内银幕亮度高,观众在这一角度内观看时图像清晰明亮:但偏离这一特定的角度时。银幕亮度有明显下降。另外,有一些方向性漫散反射银幕对某些颜色具有排斥作用,会使彩色影像的颜色失真。
3、方向性漫散透射银幕
方向性漫散透射幕的特点是当光线照射到银幕上时,在以入射光线为中心的立体角内都有透射光,在入射光方向上透射光强有最大值,偏离此方向越远透射光强越小,因此看起来入射方向最亮,远离此方向则变暗。这种幕放映时,可不用遮暗。
二、银幕的几个重要光学指标
1、银幕的反射系数、透射系数和吸收系数
光线投射到银幕上,通常分成三部分:一部分被反射,一部分被吸收,还有一部分穿透银幕。我们分别用反射系数、透射系数和吸收系数表示银幕材料对入射光线的反射、透射和吸收程度。
反射系数=银幕反射的光通t/照射到银幕的总的光通量(1)
透射系数=银幕透射的光通量/照射到银幕上总的光通量(2)
吸收系数=银幕吸收的光通量/照射到银幕上总的光通量(3)
对于任何一种幕面光学材料,这三个系数之和都等于1。
即:反射系数+透射系数+吸收系数=1(4)
各种银幕的光学材料都可用上述三种系数表明其特性,某种材料的吸收系数大,说明射到它上面的光通量损失大。无论是何种银幕都要求吸收系数值越小越好。吸收系数的大小与银幕光学材料的吸光性、厚度和颜色有关:材料吸光性高、厚度大、颜色深,则吸收系数大。与其它材料相比,白色材料吸收系数值最小。
反射型银幕要求反射系数大,透射系数尽量小。在同样的光照条件下,反射系数越高,银幕反射的光线就越多。幕面就越亮。透射型银幕则要求透射系数尽量大,反射系数尽量小。
2、银幕的亮度系数
银幕的亮度系数Rα,就是在同一照明条件和规定的观察条件下,当入射光线沿银幕法线方向时,在观看银幕一侧与银幕法线方向成α角方向的银幕亮度Bα与同样条件下理想漫散幕的亮度BO的比值。即Rα=Bα/BO(5)
理想漫散幕是抽象的一种理想银幕,即反射系数(或透射系数)为1,并且能将全部入射光能量以完全均匀的亮度反射(或透射)到半球空间内。
显然,由式(5)看出亮度系数Rα是角度α的函数,不同银幕的亮度系数Rα可用亮度系数特性曲线表示,它表明银幕表面亮度系数根据观察方向不同而变化的情况,如图1。
(1)当银幕是理想漫散银幕时:Bα=BO,Rα=1。其特性曲线如曲线1所示。
(2)当银幕是实际漫散银幕时,亮度Bα在近法较大幅度内与。α角无关,仅在α接近90度时,亮度才有所降低,其特性曲线如曲线2所示。所以漫散反射银幕的光能量分配在一定范围内是均匀的。观看者在此范围内观看银幕时,亮度大致相同。
(3)当银幕是方向性漫散银幕时,在银幕法线(假定入射方向沿法线)方向的某个范围内Bα可以大于BO,因而Rα>1,但随着α角的增大,Bα不断减小,Rα则随着不断减小。当α超过一定值时,Rα即小于1,其亮度特性曲线如曲线3所示。由于方向性漫散银幕对入射的光能量在空间的不同方向上重新分配,光线集中在某个方向上,其亮度系数大于1,但是这些方向上的亮度提高是依靠降低其它方向上的亮度来实现的,反射系数(或透射系数)并未超过1。
我们把亮度系数的最大值称为银幕的增益。漫反射银幕典型的亮度增益值在0.8-1.0之间,而方向性漫散银幕的亮度增益可以从1.4直到2.0,甚至更高。所以方向性漫散银幕也称增益银幕。对于增益银幕,我们不能只虑它的增益系数,还要考虑银幕的亮度特性曲线是否平缓。低增益系数银幕的亮度系数随着角度的增大降低的幅度较小。高增益系数银幕的亮度系数随着角度的增大降低的幅度较大。也就是说,对于高增益银幕,我们希望其亮度特性曲线越平缓越好。
经多年试验和验证,电影界已形成银幕亮度标准,且被全世界采用。在SMPTE公布的与影院放映影片有关的银幕亮度标准中,规定银幕中心亮度为16英尺朗伯(55cd/m2)。边缘为12英尺朗伯(41.25cd/m2)。这是放映机上无影片运行、白光下所测得的银幕亮度值。该标准同时指出银幕中心亮度不宜过亮,也就是说不应有热点(hotspotting)。通常,银幕亮度取决于放映机发出的光流以及放映灯和银幕之间的光损失,也就是反光镜、镜头、放映窗玻璃所造成的光损失,以及从银幕上反射光线的损失。
3、银幕的散射角
散射角也称为视角,是指亮度系数为Rα=0.7Rαmax(Ramax指该银幕的增益)时的2a角称为散射角,如图1所示。散射角在选择银幕时是一个重要的光学参数,观看者观看银幕时,应处于散射角范围内,这样才能获得较为清晰、明亮的图像。一般来说银幕的增益越大,散射角越小:增益越小,散射角越大。
4、银幕的清晰度
银幕画面清晰度是放映质量的重要指标之一,是指银幕上影像各细部影纹及其边界的清晰程度。通常以解像力来表示,即每毫米可分辨的线条数,单位为线对\毫米。解像力越高。并且银幕中心和四周的解像力相差不大,则银幕上的图像显得越清晰。一般来说,银幕的解像力达到50线对\毫米就可以达到比较良好的图像清晰度。
三、常用的几种银幕
1、白色布幕、白色塑料幕、布基涂塑幕
白色布幕由白布精漂而成l白色塑料幕是由白色聚氯乙烯制成,布基涂塑幕是在幕基(布或其它织物)上喷涂一层白色聚氯乙烯或白色硫酸钡涂料而成。这些银幕都属漫散反射式银幕,光线反射柔和,亮度均匀,增益不高,对放映环境透光遮挡要求严,反射系数在0.7~0.85,散射角在140度左右。
2、金属银幕
金属银幕均属方向性漫散反射银幕,金属银幕可提供更大的辐射强度,就像镜子反射光一样,这种银幕的亮度系数范围较广,一般在1.5~10之间。使用这种银幕时应注意,增益越高,散射角越窄。该银幕的缺点是密度不易做均匀,从而造成平整度受影响,因此,建议不要用这种材料制作太大的银幕。
金属银幕分为铝箔反光幕和银粉幕。铝箔反光幕是在幕基(如麻布、白细布、漆布、塑料等材料)上喷涂一层铝反射层或刷一层铝粉漆。也可将铝板表面腐蚀或喷砂形成白色无光泽表面。这种银幕随制作工艺不同,反射系数通常不超过0.65,亮度系数可在1.5~4.5之间,散射角一般不超过50度。银粉幕是在幕基上均匀涂上银粉使之反射投影光。
金属银幕中有一种称为金属光栅银幕,它是在幕基上涂布一层含有增塑剂的白色聚氯乙烯,再涂含铝粉的清漆,干燥后在专门的机器中加热到200度C,并压出光栅网格。这种幕的散射角水平方向为1000,垂直方向为500,在此范围内亮度系数平均为1.3,在法线方向为1.5。这个范围内反射光占全部反射光的81%,占放映机有效光通量的52%,因而金,属光栅银幕光效高,均匀性好。
3、玻璃微珠幕
玻璃微珠幕是在幕基上涂一层白胶漆,然后再均匀喷上一层直径为0.02~0.03mm的透明玻璃珠,经干燥后而成。玻璃微珠幕属于方向性漫散反射印幕,具有耐老化、不易褪色、色彩还原性好的优点,银幕增益为2~4之间,幕前中心亮度为580E左右,反射系数0.75以下,散射角约为50度左右。此类银幕玻璃珠直径越大,散射角越小,亮度系数越大。这种银幕不能折叠,不能用手指、锋利硬物碰触幕面,否则容易造成污痕和裂纹。
4、穿孔银幕
通常放映时为了使声音与画面效果配合协调一致扬声器最好放置在银幕后的正中央处,这时就会影响声音的高频特性。为了提高声音保真度,可使用穿孔银幕。银幕穿孔既要获取最佳的声学特性,又要使观众观察不到幕孔。穿孔银幕的构造是在幕面均匀打上很多小孔,一般孔的直径在0.5-1.2mm之间,小孔之间应有5.5mm的间隔:小孔面积总和占银幕面积的2%~5%左右,这样观众在观看影像时看不到小孔。穿孔银幕有不同的幕面构造。常见的有橡皮穿孔幕、塑料穿孔幕、玻璃珠穿孔幕、金属穿孔幕等。银幕经穿孔后,其表面特性不变,只是改变了音响效果。穿孔银幕因幕面有孔,透光较多,亮度将降低。
5、毛玻璃银幕
属方向性漫散透射银幕,用毛玻璃制成,一般尺寸不大,方向性特别强,最大亮度系数可达13。
四、银幕的选择
银幕类型、形状和尺寸三个因素影响着银幕上的影像。银幕的选择主要依据放映场所的实际情况,合理选择银幕的类型、银幕的尺寸和银幕的形状。
1、银幕类型的选择
方向性漫散反射银幕,由于亮度系数大,散射角小,所以适合用于窄而长的放映场所。对于宽而短的放映场所,则应选择散射角大、亮度系数均匀的漫散反射银幕,这种银幕能使各个方位的观众都获得满意的视觉效果。对于无任何遮光条件而又明亮的放映场所,可考虑选择透射式银幕,其抗杂光干扰性能特别好。放映立体幻灯或电影,则必须选择金属银幕,因为金属银幕的反射不改变光的偏振情况,其它材料的银幕反射改变光的偏振情况。
2、银幕形状的选择
银幕的外形一般有长方形和正方形,长方形适用于电影放映,正方形适用于幻灯、投影放映,银幕的宽高比例要适合于放映设备显示的图像比例。银幕大小与影像格式的关系如表1所示
银幕形状还普遍认为应遵守漫反射银幕为平面、增益银幕为弧形这一准则。其理由是如果漫反射银幕采用弧形设计,银幕上相互之间由于光的散射会使亮度降低,而且有可能使对比度下降,所以漫反射银幕通常为平面设计,增益银幕弧深为弦长的5%(弦高比20:1)。弧形大的银幕可容纳更多的观众。所以,选择弧形银幕设计时推荐使用增益银幕。
3、银幕大小的选择
小学数学互动式教学,就是要把教师的教和学生的学进行互动式地整合,把直接经验的改造、发展作为互动学习的重要目的,把间接经验整合、转化为直接经验,成为儿童素质的有机组成部分。以促成新教学目标的达成。在具体的教学实践中我是这样处理的:
一、教,在互动中教
陶行知先生曾经说过:“以教人者教已”,“陶先生不但要拿他教的法子和学生学的法子联系起来,并且和他自己的学问联系起来。”教师在互动教学活动中,不仅要与外界的教育环境相联系,还要与自我的内在环境相协调,并取得均衡,以最优化的方式进行互动的设计、调整、实施和反思。
(1)、互动式教学:在静、动中得到均衡。
教材往往是静止的、先验的,是预设性的,而小学生往往是喜动的,教师在互动教学设计时要化静为动,把教材与学生的日常生活经历相联系,把教材与学生的生理、心理特点相联系,并结合教师的特长以及教学风格、特点,联系教学的环境,创设互动机制,才能取得最优化的教学效果。如我在教学《可能性》一课时,我把教材转化成这样一个互动的过程:首先师生之间开展摸乒乓球的游戏,激发起学生的热情;再引导学生发现这个随机事件发生的可能与乒乓球的多少及颜色的设置的联系;再经过动态变化的互动过程来验证、理解“可能性”与“一定”以及“可能性大小”的联系与区别;最后让学生运用可能性的知识来解释或解决生活中的一些问题;促使学生在互动过程中对知识的理解及内化、激发个体渴望互动的欲望,形成良性的互动教学循环。整个过程符合探索性学习的规律。
(2)、互动式教学:在时空中得到演绎。
教学的每一教时都有相应确定的内容,这是课程标准中的一个目标,也是课程实施的依据,且有它的规定性。但从实施的内容和时空的匹配来看,并不是饱和的,具有一定的伸缩性与机动性。教师在教学设计时要以讲化动,调控出相当的时间和空间,营造学生互动的平台,使学生在互动中形成凝聚,让反应人本发展的力量成为主导旋律。又以《可能性》为例,教学时,我尽可能压缩了教师要讲的内容,增加了和学生的互动,和学生展开了二次摸球比赛,两个盒子各有8个乒乓球,摸到白球多的为胜。第一次由于教师的盒子里都是白球,而学生的盒子里有4个白球、4个黄球,教师自然必胜。学生在不服气的情况下,油然产生了新的更深刻的互动,探索出了随机结果的“一定”与“可能”;第二次比赛同上相仿,由于教师的盒子里是7个白球1个黄球,而学生的盒子里是7个黄球1个白球,学生认识顿悟,又内化了可能性的大小,这种互动的体验是刻骨铭心难以忘怀的。
(3)、互动式教学:在过程中得到调整。
教师上课的教案是事先预设的,是主观上理想的东西,但我们所要面对的每一个班级、每一个学生都是不同的,在不同的场合、不同的环境下,学生又有不同的心理,就会导致互动各种随机状况的出现,而教师绝不能把自己的主观意愿强加给学生,硬把学生拉到预设的轨道上,互动教学活动也是一种教师和学生融合的历史流。教师要联系学生的具体情况作出判断和调整,调整自我的互动预设,推动教学进程,并及时做出教学反映,当然这种教学机智得宜于教师的教学经验与人文修养,还取决于投入同步与预设的宽度。又以《可能性》为例,课后有的老师问我,“假如说学生在摸球时要和你换盒子,你换否?”回答是肯定的,换!因为这有利于互动,也是尊重学生人格、尊重学生的生活经验、尊重学生人本发展的需要。又问:“现在学生输了,不服气地探索出了原因,假如你输了又如何?”回答是:我将请学生帮助我寻找到输的原因,同样也能达到预定的教学目标。这也是互动的精彩。
(4)、互动式教学:在放收中得到交融。
互动学习是人的最基本的一种学习方式。如果说互动学习是一种过程,那么,所谓的放就是指让学生尽情地动起来,使个体通过反复观察、感受、实践、探究,亲身经历全过程;如果说互动状态是一种多水平要素的整合,那么所谓的放在于使个体在经验获得及行为变化过程中,通过心理感受,情感互动,认识顿悟,反省内化,提高感知水平、认识水平和意志水平。放要放到位,使内心深层的互动得到深化、扩展和升华。当然这种放绝不是任凭主观意识的放马由缰,而是要指导学生,不仅要用眼睛看,用耳朵听,用嘴讲,用手操作,用身体去经历、体察,而且要用脑子去思考、探究,用心灵去意会、感悟。内化为心理素质,外化为行为习惯。所谓的收即学生已有深层的互动就见好就收。同时发挥收的功能,防止出现被动接收、脱离实际、感受力下降、缺乏互动、忽视内化、知行脱节等问题。收放的交融可以使互动默契、强烈、更有效。
二、学,在互动中学
亲知是一切知识的基础。互动也是亲知的主要方式之一。只有让学生回归自我生活,回归原有知识,并融合新教学的内涵,形成强烈、完整、清晰的互动,才能更好地探索,更好地理解、更好地记忆,更好地创生。
(1)、互动式学习:主动的学习。
互动是亲身经历的体验,这就强调了少年儿童是互动学习的主体,同时也是自我发展的主体。要激活他们自主参与各种富有教育意义的互动学习活动的动机,使互动学习成为自觉的学习,主动的学习。《可能性》教学,创设了师生两次摸球比赛,使比赛成了互动学习的催化剂,输赢成了个体关注首选的焦点,当摸球结果与旧有的生活经验矛盾时,更大热情地融入了互动。本课成功之处就在于通过师生互动,激活了学习互动的热情,自觉并渴望投入到互动活动中去,学生正是有了这些互动,思路打开了,精力投入了,热情高涨了,目标达成了,学习轻松了。追随着互动的实践,得到了成功的体验。
(2)、互动式学习:创造的学习。
在互动中,将学习空间回归自我的生活空间,从而使旧有经验得以激活,也增加了运用的张力。学生能利用原有知识、表象或经验,作为互动的基础,融入新的互动,开展再造想象和创造想象,进行大胆猜想或预测,获得积极互动和顿悟。《可能性》教学中,教师就是为了培养学生的创新精神和能力,设置了新颖的师生互动方式,提出了似乎明白但又说不清的半捆惑问题,在充满情趣的教学情景中,使学生产生创新的动机,激发、强化创新行为,探索出了控制或改变随机事件结果的“一定”“可能”及可能性大、小等规律。享受到了创新的成功与快乐。
(3)、互动式学习:立体的学习。
学生的互动是多元的。不同的教材内容、不同的学习方式都有不同的互动,相同的教学内容也有多元的互动。在学习中联系、尊重自我的互动,使知识能够更好地联系自我的准心理空间,从而产生内化和顺应,进而使互动更加立体。联系的空间更加宽广,能有更多样的运用可能。不仅在认识水平上,而且在个性心理上以及动作操作上,形成立体的发展。《可能性》就是创设了立体学习的互动,课堂的小游戏营造了融洽的氛围,加深了师生情谊,让学生敢说、想说,情商在互动;师生的互动比赛,激活了旧有的生活体验,只有争论,没有胆怯,思维在互动;追朔原因和结果,探索活动在展开,体察、理会、领悟、开窍,再创造在互动;“把球装进口袋里”(每生用一个球根据口袋上的要求设置摸球口袋)的活动,生生交互产生碰撞,智慧在互动;课末学生的自评、互评和激励,点亮了人本发展航船的航标灯,生命在互动。整节课学生对自我、同学、老师的多元互动,形成了立体的学习。
关键词:创造性思维、直觉思维、发散思维
数学教学不仅是传授知识,更重要的是培养学生的思维能力。“数学是思维的体操,是智力的磨刀石。”数学思维能力是数学能力的核心,数学中的创造性思维又是数学思维的品质。创造性思维具有思维的广阔性、灵活性、敏捷性之外,其最为显著的特点是具有求异性、变通性和独创性。这里的“独创”,不只是看创造的结果,主要是看思维活动是否有创造性态度。创造性思维是未来的高科技信息社会中,能适应世界新技术革命的需要,具有开拓、创新意识的开创性人才所必须具有的思维品质。因此,在数学教学中,如何培养学生的创造性思维能力,是一个非常值得探讨的问题。本文结合自己十几年教学实践,谈谈在数学教学中对培养学生的创造性思维能力的途径和方法。
一、创设思维情境,诱发学生的创造欲
在数学教学中,学生的创造性思维的产生和发展,动机的形成,知识的获得,智能的提高,都离不开一定的数学情境。所以,精心设计数学情境,是培养学生创造性思维的重要途径。
亚里士多德曾精辟地阐述:“思维从问题、惊讶开始”,数学过程是一个不断发现问题、分析问题、解决问题的动态化过程。好的问题能诱发学生学习动机、启迪思维、激发求知欲和创造欲。学生的创造性思维往往是由遇到要解决的问题而引起的,因此,教师在传授知识的过程中,要精心设计思维过程,创设思维情境,使学生在数学问题情境中,新的需要与原有的数学水平发生认知冲突,从而激发学生数学思维的积极性。
例如,在复数的引入时,可先让学生解这样的一个命题:
已知:a+=1求a2+的值
学生很快求出:a2+=(a+)2-2=-1但又感到迷惑不解,因为a2>0,>0,为什么两个正数的和小于0呢?这时,教师及时指出,因为方程a+=1没有实数根,同学们学习了复数的有关知识后就会明白。这样,使学生急于想了解复数到底是怎样的一种数,使学生有了追根求源之感,求知的热情被激发起来。
又如,在讲解“等比数列求和公式”时,先给学生讲了一个故事:从前有一个财主,为人刻薄吝啬,常常扣克在他家打工的人的工钱,因此,附近村民都不愿到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,同时讲了打工的报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱,......以后每天的工钱数是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?由于问题富有趣味性,学生们顿时活跃起来,纷纷猜测结论。这时,教师及时点题:这就是我们今天要研究的课题——等比数列的求和公式。同时,告诉学生,通过等比数列求和公式可算出,这个财主应付给打工者的工钱应为230-1(分)即1073741824分≈1073(万元),学生听到这个数学,都不约而同地“啊”了一声,非常惊讶。这样巧设悬念,使学生开始就对问题产生了浓厚的兴趣,启发学生积极思维。
以上两个例子说明,在课堂数学中,创设问题情境,设置悬念能充分调动学生的学习积极性,使学生迫切地想要了解所学内容,也为学生发现新问题,解决新问题创造了理想的环境,这是组织数学的常用方法。
二、启迪直觉思维,培养创造机智
任何创造过程,都要经历由直觉思维得出猜想,假设,再由逻辑思维进行推理、实验,证明猜想、假设是正确的。直觉思维是指不受固定的逻辑规则的约束,对于事物的一种迅速的识别,敏锐而深入的洞察,直接的本质理解和综合的整体判断,也就是直接领悟的思维或认知。布鲁纳指出:直觉思维的特点是缺少清晰的确定步骤。它倾向于首先就一下子以对整个问题的理解为基础进行思维,获得答案(这个答案可能对或错),而意识不到他赖以求答案的过程。许多科学发现,都是由科学家们一时的直觉得出猜想、假设,然后再由科学家们自己或几代人,经过几年,几十年甚至上百年不懈的努力研究而得以证明。如有名的“哥德巴赫猜想”“黎曼猜想”等等。因此,要培养学生创造思维,就必须培养好学生的直觉思维和逻辑思维的能力,而直觉对培养学生创造性思维能力有着极其重要的意义,在教学中应予以重视。
教师在课堂教学中,对学生的直觉猜想不要随便扼杀,而应正确引导,鼓励学生大胆说出由直觉得出的结论。
例如,有一位老师上了一堂公开课。他刚在黑板上写上下面的题目:平面上有两个点(t+,t-)(t>0)与(1,0),当这两点距离最短时,t=____。有一位同学小声说道:t=1,老师问他为什么?那位学生只是吞吞吐吐,词不达意,说不出所以然。那位老师让他坐下,并批评了他。实际上,那位学生凭的是直觉,首先直觉到:距离最短t+有最小值t=1。这时老师应该引导学生去仔细推敲,找出理论依据。其实“追踪还原”出事物本来面目,便可解释为:如图所示,因为t+≥2,所以动点P(t+,t-)位于直线x=2的右则,(含直线x=2本身),t=1时,对应点P′的坐标为(2,0),恰好是Q(1,0)在直线x=2上的射影,P′Q的长即为直线x=2的右半面上所有点到点Q的距离的最小值。
同时,还可以从深一层意义“还原”下去:设动点为(t+,t-),将方程x=t+,y=t-两边平方后相减,可得方程x2-y2=4(x≥2),故点Q与双曲线的右项点P’(2,0)距离最小,所以│PQ│min=2-1=1,这时,t+=2,t-=0,即t=1。
如果这样讲,不仅保护和鼓励了学生的直觉思维的积极性,还可以激活课堂气氛。
由此可见,直觉思维以已有的知识和经验为基础的,因此,在教学中要抓好“三基”教学,同时要保护学生在教学过程中反映出来的直觉思维,鼓励学生大胆猜想发现结论,为杜绝可能出现的错误,应“还原”直觉思维的过程,从理论上给予证明,使学生的逻辑思维能力得以训练,从而培养学生的创造机智。
三、培养发散思维,提高创造思维能力
任何一个富有创造性活动的全过程,要经过集中、发散、再集中、再发散多次循环才能完成,在数学教学中忽视任何一种思维能力的培养都是错误的。