欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数学解决问题论文范文

时间:2023-02-23 06:28:11

序论:在您撰写数学解决问题论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数学解决问题论文

第1篇

一题多叙一题多叙指的是从各种不同的认知角度,依据数量关系去叙述同一式题的教学法。这样训练有利于提高学生对“文字题”与“应用题”关系的理解,有利于培养学生分析问题、解决问题的能力。

如式题;56÷7

1.按其运算顺序叙述:

①56除以7,商是多少?

②7除56,商是多少?

③56与7的商是多少?

④56被7除,商是多少?

⑤用7去除56,商是多少?

2.按其数量关系叙述:

①56里面有几个7?

②56是7的几倍?

③把56平均分成7份,每份是多少?

④一个数的7倍是56,求这个数?

3.按其算式的各部分名称叙述:

被除数是56,除数是7,商是多少?

文字题可以看成是式题的一种转换形式,它只是把口语转换成书面语。这样训练解决了中、差生对文字题理解的困难。如果我们再把文字题情境化,那就是所谓的应用题。

例如:1.有56支红铅笔,7支蓝铅笔,红铅笔的支数是蓝铅笔的几倍?

2.有56支铅笔,每7支铅笔分给一个小朋友,这些铅笔够分给几个小朋友?

3.把56支铅笔平均分给7个小朋友,每个小朋友分得几支?

……

由于简单式题包容着丰富的内涵,就给知识的转移、教学过程的铺垫、教学内容的深化都带来了方便。可见“一题多叙”可以培养发散思维,提高学生分析问题、解决问题的能力。

一题多变一题多变就是把一道题目改变条件或改变问题变换成许多题目。通过一题多变的训练,可使学生从变化发展中掌握应用题之间的联系,构建新的知识结构。

如当一年级学生学完一步应用题,该学两步计算应用题时,让学生知道解答两步应用题的关键是弄清题中的间接条件。由于学生对间接条件的由来不清楚,常常出现解复合应用题时不知从何入手,把两步应用题做成一步,或出现乱做现象。若老师讲一种类型题,学生就做一种类型题,那么题目稍加变化学生就不会做,就会出现死记硬背现象,形成定势思维,不利于培养学生分析问题、解决问题的能力。为了改变这种状况,我抓住解答两步应用题的关键,让学生弄清什么是间接条件,间接条件与已知条件、与问题之间有什么关系等。途径是由一步题导入。

例如:“黑兔12只,白兔3只,一共有多少只兔?”我是这样引导学生的:黑兔的只数,白兔的只数,题目中都直接给出,我们称这两个条件是直接条件,所以一步计算就可以得出一共是15只兔。如果题中第一个条件黑兔12只不变,那么第二个条件白兔3只与黑兔12只有什么关系?(学生会说:白兔3只比黑兔少9只……)如果题中“白兔3只”这个条件不直接给出,根据与黑兔的关系说出来,该怎样叙述题中的第二个条件?(学生可以答出:白兔比黑兔少9只……)解决问题需要知道白兔和黑兔的只数,白兔这个条件需要我们通过与黑兔的关系先算出来,白兔这个条件没有直接给出,这叫间接条件,谁还能把这个条件再变换一下说法,使它变成间接条件?(学生回答:黑兔比白兔多9只,黑兔是白兔的4倍……)

学生思维活跃了,想方设法说出更新颖的条件。这样他们在积极思维中理解了什么是间接条件,间接条件与已知条件、与问题的关系等。理解了也就自然会运算了。接着我又让学生将第一个条件变成间接条件,第二个条件、问题都不变,或问题随着其中的一个条件同时改变,目的仍是巩固练习两步应用题。这样的讲授方法是从学生分析问题入手,在提高学生能力上下功夫,教给学生了解问题、分析问题、解决问题的思路,使学生掌握了解两步应用题的方法,从而收到了事半功倍的效果。下例是学生把一道题目通过改变条件和问题变换成两步应用题。

附图{图}

在两步应用题的基础上,不受任何限制地变换任何一个条件和问题,使学生思维扩展,学生可编出三步四步等较为复杂的问题。这样训练,在知识方面可以使学生举一反三、触类旁通,在能力方面可以培养学生思维的灵敏性和创造性。学生分析问题、解决问题的能力明显地提高了。

一题多解一题多解就是根据题目的结构特征和数量关系,引导学生借助已有的知识,从各个不同角度去思考,从各个方面去分析题中的数量关系,采用各种不同解法达到知识的融会贯通、灵活运用。

例如:学校买来一批儿童读物,按4:5分给五年级甲乙两个班,甲班分得20本,这批儿童读物一共有多少本?

解法一:设这批儿童读物一共有x本?

204──=──

x4+5

思路:把这批读物按4:5分给甲、乙两个班,可以看作是把这批读物平均分成(4+5)份,甲班分得4份,乙班分得5份,也就是甲班分得的本数与读物总数的比是4:(4+5)。

5

解法二:20×(1+──)

4

思路:如果把甲班分得的本数看作单位“1”,乙班分得的本数就

55是甲班的─,那么这批儿童读物的总本数就是甲班分得本数的(1+─)。

44

解法三:设这批儿童读物一共有x本。

4

x×───=20

4+5

思路:把这批读物按4:5分给甲、乙两个班,可以看作是一共分成了(4+5)份,甲班分得其中的4份。把这批读物的本数看作单位"1",甲

4班分得这批读物的──正好是20本。

9

解法四:20÷4×(4+5)

思路:把这批读物按4:5分给甲、乙两个班,可以看作是一共分成了(4+5)份,其中甲班分得4份,是20本。可以先求出每一份是多少本,再求一共有多少本。

学生还能列出以下算式:

4

①20÷──+20

5

4

②20÷───

4+5

③20÷4×5+20

④解:设这批读物一共x本

x-20=20÷4×5

⑤解:设乙班读物有x本

20x

──=──,再算x+20

45

第2篇

1.新时代对高素质人才的需求

我们的数学课堂教学,更多的强调定义的解释,定理的证明和命题的推导,却忽略了从生活经验去理解数学的需要,因而学生对数学的作用产生疑惑也就不难理解。事实上,我们培养学生的数学能力和修养,恐怕不能单单地强调“数学是思维的体操”,而应该从更广阔的范围上去培养学生“用”数学的意识

时代的发展需要更多的高素质人才,他们除了要学好丰富的理论知识之外,还必须学以致用,这样才能推动时代的发展.我们学数学的目的是为了应用它去解决实际问题。因此,增强数学应用意识,培养学生数学应用能力,是素质教育的重要内容,也是数学教学的任务之一。《新课标》中就有如下论述:“应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值”,“能从日常生活中发现并提出简单的数学问题”,“了解同一问题可以有不同的解决办法”,“有与同伴合作解决问题的体验”。这就要求我们广大教师在教学时,应着眼于学生的生活经验和实践经验,开启学生的视野,拓宽学生学习的空间,最大限度地挖掘学生的潜能,从而使学生体验数学与日常生活的密切联系,培养学生从周围情境中发现数学问题,运用所学知识解决实际问题的能力,发展学生的应用意识。

2.数学知识的实用性

20世纪中叶以来,现代信息技术的飞速发展,极大地推进了应用数学与数学应用的发展,使得数学几乎渗透到了每一个科学领域及人们生活的方方面面。比如计算机的发明和不断更新换代,一方面有赖于数学发展的需要,另一方面更体现了数学知识的广泛应用.这一伟大的发明不仅推动了各个科学领域的发展,而且对人们的生活产生了巨大的影响.自然科学的深入发展越来越依赖于数学,而社会科学、人文科学也越来越多地借助于数学知识及其思想方法。比如方程的在物理学中的混合运动问题,地理学中的降水量、温度问题,化学中化学方程式的计算等的应用,一次函数知识与经济学中的利息、外汇换算,化学中的定量计算,信息学中的图表等的联系,立体几何在化学晶体结构、美术****,地理中地球的运动、太阳直射点的移动等的应用,排列组合在化学中讨论由原子、离子等微粒组成的物质种类,在生物中遗传基因自由组合可能性的讨论等应用,三角函数在物理交流电、简谐振动中的应用,向量在力学中力、运动的合成和分解、速度、加速度等的应用。数学知识不仅解决了这些学科中的一些问题,而且有力的推动了这些学科的发展.

数学作为科学的语言,作为推动科学向前发展的重要工具,在人类发展史上具有不可替代的作用,并将在未来的社会发展中发挥更大的作用。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。只有如此,才能使所学的数学富有生命力,才能真正实现数学的价值。这就要求我们必须重视从小培养学生的应用意识。

二.培养学生数学应用能力的基本途径

1.在生活中培养学生的数学应用意识

数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识,甚至某些学科的生命力也取决于对数学知识的应用程度。马克思曾指出:“一门科学只有成功地应用了数学时,才算真正达到了完善的地步。”生活中充满着数学,人们的吃、穿、住、行都与数学有关.例如通过人们吃的糕点可认识到丰富的几何图形;在商场买衣买鞋时经常会遇到打折的问题;住房转让和新房购买时的收入和支出;行程中的路程、速度和时间的关系等等.数学教师要善于从学生的生活中抽象出数学问题,使学生感到数学就在自己身边,让学生感受到生活中处处有数学,培养学生数学应用意识。

2.用实际问题调动学生的学习兴趣

心理学研究表明:学习内容和学生熟悉的生活背景越贴近,学生自觉接纳知识的程度就越高。因此,在课堂教学中,要尽可能地将教学内容与学生的生活背景结合起来,从贴近学生生活的实际问题引入新课,调动学生的学习兴趣。

(1).概念从实际引入例如在学习“垂线”的概念时,可结合实际提出这样的问题:“马路的十字路口的两条道路位置上有何关系?再比如电线杆与它上面架的电线位置上有什么关系?这些都是数学在实际生活中具体涉及到的例子,能激发学生的求知欲望,使学生产生“生活中处处有数学”的意识,而且能直观地理解垂线的意义,并意识到学习这个内容的重要性。

(2).公式、法则结合实例抽象提出结合实例抽象提出,既容易对其作出通俗易懂的解释,又容易对其自身作出本质的揭示。例如:在学习有理数减法法则时,可以这样引入新课:某一天白天的最高气温是10°C,夜晚的最低气温是-5°C,这天的最高气温比最低气温高多少?用投影仪展示分别标注着10°C和-5°C的温度计,让学生直观地看出高多少,在让学生考虑如何列算式及怎样计算,并换例让学生验证探究出来的结论,归纳出有理数的减法法则。这样不仅能激发学生学数学的兴趣,而且能激发学生爱数学、学数学、用数学的情感。

(3).公理、定理从实际需要提出例如:在学习“线段公理”时,可以从走路时往往喜欢抄斜路直奔目的地,这样做究竟是为了什么为出发点让学生思考,通过这样的实例,能调动学生的学习热情,让学生易于接受,同时还能领悟到数学在现实生活中无所不用。

教师在教学中还要注意充分利用现代化教育技术辅助教学,采用模型、幻灯、录象、计算机等现代教学手段,增加师生互动、形象化表示数学的内容,同时将抽象的知识直观化。这样能吸引学生的注意力,调动学生积极学习知识的兴趣,又能加深对知识的理解,提高学习效率.

3.教学联系实际,从生活中发现问题、提出问题

从知识的掌握到知识的应用不是一件简单、自然而然就能实现的事情,没有充分的、有意识的培养,学生的应用意识是不会形成的。教学中应该注重从具体的事物提炼数学问题,引导学生联系日常生活中的一些问题用数学知识来解决,这有助于学生数学应用意识的形成。

比如在讲“行程应用题”时,利用这样一个生活中常遇到的问题:甲乙两地有三条公路相通,通常情况下,由甲地去乙地我们选择最短的一条路(省时,省路);特殊情况下,如果最短的那条路太拥挤,在一定时间内由甲地赶到乙地我们就选择另外的一条路,宁肯多走路,加快步伐(速度),来保证时间(时间一定,路程与速度成正比)。从数学角度给学生分析这个问题用于“行程应用题”,是路程、时间、速度三者关系的实际应用。

又比如,在讲“解直角三角形”时,可利用这样一个实际问题。修建某扬水站时,要沿斜坡辅设水管,从剖面图看到,斜坡与水平面所成的∠A可用测角器测出,水管AB的长度也可直接量得,当水管辅到B处时,设B离水平面的距离为BC,如果你是施工人员,如何测得B处离水平面的高度?有的同学提出从B处向C处钻个洞,测洞深;

有的同学反对,因为根据实际情况,这样做费力;有的同学又反对,因为这不是费力问题,C点无法确定。应该运用解直角三角形知识去解决:BC=ABsinA(AB、∠A均已知)。这实在是一个施工中经常遇到的问题,这一问题的提出可以使学生感到具体的实际问题就在自己身边等待解决,增强了主动意识,激发了兴趣。

4.精心编制问题,培养学生的应用能力。

当前我国数学教材中的问题和考题多半是脱离了实际背景的纯数学问题,或者是看不见背景的应用数学问题。这样的训练,久而久之,使学生解现成数学题的能力很强,而把实际问题抽象化为数学问题的能力却很弱。而数学是以现实世界的空间形式和数量关系作为研究对象的,它的许多概念、定理和方法都从现实中来。但它有更多结论去为生产和社会各行各业服务。因此,教师可在遵循教学要求的前提下,精心编制一些与生活、科学有关的问题,可以使学生感到自己的周围处处有数学,从而使其萌发学好数学去解决实际问题的愿望,把学和用结合起来,达到提高学生应用能力的效果。

如在学习不等式时,可注意编制实际生活中有关产品的生产、销售与利润问题,旅游选最合算的购票方案问题等。

例:某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)按要求安排A、B两种产品的生产件数,有几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试用含有x的代数式表示y,并说明(1)中哪种生产方案获总利润最大?最大利润是多少?

在此问题的教学中可先引导学生根据题意列出不等式组,然后由解集和实际要求设计方案;而在第二问中还涉及到函数知识的实际应用,对后面函数知识的学习作了准备。根据教学目的编制这类与生活相关的问题,在教学时学生不仅容易接受,而且能体会到数学知识在生活中的实用价值,让学生知道了数学来源于生活,并服务于生活。

在教学中,可逐步引导学生根据所学知识并结合实际编制问题并解决问题,逐步增强学生学数学、用数学的能力。

5.加强课外实践,带着数学知识走进生活

著名的数学华罗庚先生曾说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”精辟地阐述了数学在现实生活中的广泛应用。可以说数学为很多生活问题建模。

例如举行一次野炊活动。一方面要引导学生收集大量信息,深化统计的学习,另一方面也让学生参与活动的全过程:调查市场行情,让学生亲自去粮店买米,去菜场买菜,在整个活动过程中学生可能会遇到许多困难,如买菜中的估算,人民币的支付,菜的搭配和选择等策略活动,引导学生有序地思考,提高解决实际问题的能力,渗透应用数学的意识。素质教育的发展要求,人类生活的实际需要,社会经济文化的一体化发展进程,让我们每天思考,每天探求,每天革新。“野炊”活动将学生学习数学与生活紧密相连,让孩子们津津有味地评论着自己所买的菜,交流着买菜的体验,充分展示了每个人的个人爱好,生活经验、情趣,也学习和交流着学习数学所包融的价值观,实用观,享受着学习数学的快乐

又如有一年经常下雨,玉米的收成不太好,农民议论说今年的玉米可能要减产几成了。于是设计了这样的作业:分小组调查自己村中的几户人家,了解他们种同样多的地,去年和今年的玉米收成情况,根据搜集的数据算出这几户人家今年比去年减少了几成,这几户人家平均减产几成。思考:是什么原因列出来,小组中的学生分工进行调查,完成调查后,合作写出一份调查报告,并给农民提出建议。这是融数学、科学、社交知识于一体的综合练习,前半部分是百分数(成数)的实际应用,没有给出具体数据,需要学生自己调查完成;后半部分是学生调查造成减产的原因:(1)与经常下雨有关。(2)管理不当,病虫害的缘故。(3)空气污染。(4)玉米品种问题。这样的作业设计取材农村特有的资源,从孩子们身边的现实问题入手,给学生提供了一次运用各种知识进行实践活动的锻炼机会。在这一过程中学生学会获取知识、掌握研究问题的方法,培养实际运用能力,使自己成为学习的主人。

总之,教师在平时的教学过程中,应有意识地收集、整理一些适应本地生活、生产需要的实际应用性问题,注意收集与教学内容相关的实际素材组织教学活动,增加实习作业和探究性活动,找到向实际问题过渡的渗透点,使学生领悟数学的应用价值,达到潜移默化地培养学生应用数学的能力,为培养出适应知识经济时代的创新型人才提供可能。

参考文献:

第3篇

我国的小学数学教学与国际上其他一些国家的小学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力培养等显著特点。然而,改革开放使我国数学教育界看到了小学数学教学的不足,其中突出的两个问题是:学生应用数学的意识不强,创造能力较弱。要从根本上改变这一现状,还应在小学数学课程设计上有所突破。

我们在2013年3月25日,进行了“小学生问题解决策略选择的城乡对比研究”。调查结果显示,小学生解答基本题的正确率为63.4%,解答变式题的正确率为51.8%,从总体上分析,我们欠发达地区小学生的问题解决能力有待进一步提高。

根据认知理论,数学学习过程是一个数学认知过程。数学教育的根本任务是发展学生的数学认知结构。小学数学问题解决能力的形成,是主体通过学习新的内容并和原有的数学认知结构相互作用,以形成新的数学认知结构的过程。为此,我们提出“分解目标,设计问题;讨论问题,提出方案;策略交流,解决问题”的问题解决教学策略。

一、分解目标,精心设计“问题”

目标分解要根据小学数学课程标准,结合学生实际将知识目标分解成若干个目标,落实到课堂教学的各个环节当中逐个解决。在教学中,一般采用“低起点,小梯度,多训练,分层次”的方法,将学习目标分解成若干层次,设计出由浅入深的基础题,逐步加深,在适合学生的最近发展区内运用一系列问题串设问,层层递进,消除学生的学习障碍,提高学生的学习信心,从而突破教学重难点。

二、讨论问题,提出方案

这是寻求阶段,即利用数学认知结构寻求问题解决的途径。在这一阶段,教师要引导学生讨论问题、提出方案,致力于“问题解决”能力的培养。小学数学“问题串”目标分解教学过程中,我们要求教师做好导学工作——设计好“问题串”,把新知识的学习过程交给学生自主探究与合作学习,让学生在自主探究中发展能力、在合作学习中构建新知。在这一阶段,教师应当帮助学生建立有效的学习小组,鼓励合作,强调几何直观,关注学法指导。

1.建立有效学习小组

学习小组有同质小组和异质小组两大类,基于学生学习能力的发展不平衡,小学数学“问题串”目标分解教学面临着学生学习水平不一致的问题。为了让不同发展水平的学生都能解决问题,我们建议组建异质学习小组,让不同层次的学生多层次、多方位交流信息,共同探究,最大限度地发挥学习小组的合作功能。教师一方面要督促后进生聆听优生对问题的分析,另一方面要关注学习小组讨论中的思维活动、学习态度、学习精神等信息,更重要的是收集通过小组学习也不容易理解的知识,找准学生学习的难点,为后续的讲解寻求切入点。

2.鼓励合作

新课标指出,学生是学习的主体,“问题解决”的过程就应该是学生自己对数学知识的再创造过程。我们提出,要留给学生自主探索的机会,给足学生合作交流的空间,把学习的自主权还学生,激励学生在独立思考的基础上合作解决问题。

3.强调几何直观

皮亚杰说过,“认识一个客体,必须动之以手”。事实证明,学生提出的问题,很多可以让学生自己操作学具来解决。如学生提出问题:“圆柱上下两个底面的面积相等吗?”对于这个问题,我们不急于将结果告诉学生,而是让他们讨论:“你能用什么方法检验圆柱上下底面的面积是否相等?”这样学生在学习过程中动手、动脑、动口、动眼,既知其然,又知其所以然。

4.关注学法指导

中国有句古话叫“授人以鱼不如授人以渔”,说的是传授给人知识,不如传授给人学习知识的方法。要提高学生解决问题的能力,教给他们一些比较完整的解决问题过程和常用方法是十分必要的。当前,新课程反对将“应用题”分类,其根本目的是担心教师将解决问题的过程与方法讲得过分精细、强调得过分强烈。然而,作为小学阶段的学生必须掌握的几种解题方法,如画图法、假设法、列表法、估算法等,我们应该教给学生,这样,他们解决问题才能有章可循,有道可走。

三、策略交流,解决问题

“问题解决”的核心内容就是要让学生创造性地解决问题。不同的人思维方式也不同,其解决问题的方法也不相同。我们应当给予学生充分的信任,决不提前暗示,更不可替代学生的思考。教师应该做的是创设情境,让学生在自信中沉思,在策略交流中收获。利用“追问”,让学生知其然;利用“反问”,让学生知其所以然;通过“类比”引导学生提出新的问题。在“提出问题——解决问题——提出新问题——解决新问题”的过程中交流策略,发展能力。

例如学习完“三角形内角和”时,可以提出这样的问题:“你认为三角形除了内角和是180度这个秘密外,还有没有其他秘密?你准备怎么去探究?”一个问题就让能够学生主动整理本堂课的学习方法,并将方法迁移到另一个探究活动中。

1.模拟练习,运用问题

新鲜有趣,与生活贴近的问题,易引起学生的兴趣,更有利于帮助学生理清教学与实际问题的联系。数学源于生活又高于生活,小学生的数学学习,不仅仅是解决问题、掌握现成的数学知识和技能,更重要的是要知道如何运用课堂所想的问题去探究新的世界。因此,在教学中,还要引导学生应用所学的知识解决一些实践性的问题。

小学数学中的知识,在现实生活中有着广泛的应用。比如“年月日”,“元角分”,“周长和面积”,等等。我们要善于鼓励学生把自己在现实生活中发现的数学问题说出来,写下来,通过交流、评比,提高他们到实践中去学数学的自觉性。做错题集、写数学日记、撰写数学小论文都是很好的练习,既可以巩固新知,又可以提高学生运用问题的能力。

2.总结经验,构建新知

新课程提出要学生在数学学习活动中积累数学活动经验,我们可在课堂结尾处预设一个启发学习方式的问题,以此帮助学生回顾学习过程,总结学习方式,形成自主学习能力。

第4篇

当前,随着素质教育的全面推进,高中数学新课标对“创新精神与实践能力”的培养已成为素质教育的核心。问题解决能力就是“创新精神与实践能力”在高中数学教育领域的具体体现,是一种重要的高中数学素质。本课题力图通过教学实践研究,寻找"问题解决"能力培养与课程教材知识体系学习之间的互补与平衡,形成稳定简明的教学理论框架及其操作性较强的高中数学课堂教学模式,促进高中学生的高中数学意识、逻辑推理、信息交流、思维品质等高中数学素质的提高,为高中学生的自主学习、发展个性打下良好基础。四川省安县中学作为一所重点高中学校,除了以优良的教育教学成绩展示给世人外,强大的教育科研能力也是其自身硬实力的一个方面,为此,本人在高中多年数学教学工作中进行了一些较为实用的探索,其中“问题解决”课堂教学模式较好的解决了当前师生在教学中的一些困惑。现形成于文与各位同仁交流。

(一)“问题解决”课堂教学模式的理论框架:(1)在一定的问题情境背景下,高中学生可以利用必要的学习材料,借助教师和同伴的帮助,通过意义建构主动获得知识。(2)问题解决能力的培养为高中学生学习高中数学知识提供动力,而系统的高中数学知识体系为问题的解决提供保障。问题解决能力的培养与高中数学知识体系的建构两者之间的互补与平衡有助于高中学生认知结构的完善。(3)高中学生和教师是教学活动中能动的角色和要素,师生关系是互为主体、互相依存、互相配合的,师生双方的主体性在教学过程中都应得到发展和发挥。(4)高中学生主体作用主要体现在高中学生的学习活动过程中。(5)教师的主体作用主要体现在对教学活动进行科学认识的过程中,教学过程中教师的主导是发挥主体作用的具体表现形式。

(二)“问题解决”课堂教学模式的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用高中数学基础知识、基本技能和高中数学思想方法分析问题、解决问题的能力和意识。

(三)高中数学问题解决能力培养目标:1.会审题——能对问题情境进行分析和综合。 2.会建模——能把实际问题高中数学化,建立高中数学模型。3.会转化——能对高中数学问题进行变换化归。4.会归类——能灵活运用各种高中数学思想和高中数学方法进行一题多解或多题一解,并能进行总结和整理。 5.会反思——能对高中数学结果进行检验和评价。6.会编题——能在学习新知识后,在模仿的基础上编制练习题;能把高中数学知识与社会实际联系起来,编制高中数学应用题。

(四)“问题解决”课堂教学模式的操作程序:教学流程:创设-尝试-自主- 反馈情境-引导-解决-梳理。

1.创设问题情境,激发高中学生探究兴趣。从生活情境入手,或者从高中数学基础知识出发,把需要解决的问题有意识地、巧妙地寓于符合高中学生实际的基础知识之中,把高中学生引入一种与问题有关的情境之中,激发高中学生的探究兴趣和求知欲。创设问题情境的主要方法:(1)通过语言描述,以讲故事的形式引导高中学生进入问题情境;(2)利用录音、录象、电脑动画等媒体创造形象直观的问题情境;(3)高中学生排练小品,再现问题情境;(4)利用照片、图片、实物或模型;(5)组织高中学生实地参观。

2.尝试引导,把高中数学活动作为教学的载体。高中学生在尝试进行问题解决的过程中,常常难以把握问题解决的思维方向,难以建立起新旧知识间的联系,难以判断知识运用是否正确、方法选择是否有效、问题的解是否准确等,这就需要教师进行启发引导。常用启发引导方式:(1)重温与问题有关的知识。(2)阅读教材,学习新概念。(3)引导高中学生对问题进行联想、猜测、类比、归纳、推理等。(4)组织高中学生开展小组讨论和全班交流。

3.自主解决,把能力培养作为教学的长远利益。让高中学生学会并形成问题解决的思维方法,需要让高中学生反复经历多次的"自主解决"过程,这就需要教师把高中数学思想方法的培养作为长期的任务,在课堂教学中加强这方面的培养意识。常用方式:(1)对于比较简单的问题,可以让高中学生独立完成,使高中学生体会到运用高中数学思想方法解决问题的快乐。(2)对于有一定难度的问题,应该让高中学生有充足的时间独立思考,再进行尝试解决。(3)对于思维力度较大的问题,应在高中学生独立思考、小组讨论和全班交流的基础上,通过合作共同解决。

(五)高中数学问题解决能力培养的课堂教学评价标准: 1.教学目标的确定:(1)知识目标的确定应重视高中数学基础知识和基本技能;(2)能力目标的确定应强调高中数学思想方法的揭示和培养;(3)情感目标的确定应注意学习兴趣的激发、良好人际关系的建立、科学态度和创新精神的培养等等。2.教学方法的选择:采用探究式、启发式教学方法,通过问题激发高中学生求知欲,使高中学生主动参与高中数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握高中数学基本知识、基本技能和基本高中数学思想方法,培养积极探索和团结协作的科学精神。3.问题的选择:合适的问题至少应有如下特点之一:(1)重视情景应用,即给出一种实际情景和需求,以解决现实困难为标志。(2)具有探究性,即问题不一定有解,答案不必唯一,条件可以变化,试验方案可以自己设计,允许与别人讨论等等。(3)非形式化,即不是教材内容的简单模仿,不是靠熟练操作就能完成的,需要较多的创造性。4.师生双主体意识的体现:(1)在课堂教学活动过程中,高中学生主动参与学习意识强,能主动发现和分析问题,能联系新旧知识,能在独立思考的基础上,与同伴开展交流、讨论,能提出解决问题的各种方法,并努力进行验证。(2)在课堂教学活动过程中,教师能创造性地设计教学过程,洞察课堂中发生地各种问题,并准确地判断发生问题的原因,能动地、有效地处理这种问题,把握教学活动地主动权。

(六)高中数学问题解决能力的评价标准与方法:1.高中数学问题解决能力的评价标准:(1)能否把实际问题转化为高中数学问题;(2) 能否应用各种策略或思想方法去解决问题;(3) 能否有效地解决问题;(4) 能否证明和解释结果;(5) 能否概括和推广解法。2.高中数学问题解决能力的评价方法:(1)观察高中学生解题过程的细节;(2)聆听高中学生对解题方法的讨论;(3)批改高中学生的作业、测验和考试卷;(4)分析高中学生的学习体会或考试心得;(5)阅读高中学生的高中数学小论文。

第5篇

【关键词】初中数学问题解决

一、数学问题解决概念

所谓数学问题解决是指综合地、创造性地运用各种已有的数学知识去解决那种并非单纯练习题式的问题,包括实际问题和源于数学内部的问题。数学问题解决过程是一种重要的思维活动。因为概念形成和推理都直接、间接地具有问题解决的形式,问题解决还突出地表明人们心理活动的智慧和创造性,其中创造是其最高的表现形式。研究问题解决的过程、影响因素、策略以及培养创造性解决问题的能力,已成为创造教育的一大主流。事实上,数学教学最终目标就是教学生解决问题以及掌握创造性思维方式和养成良好的思维习惯。

二、数学问题解决的基本特征

1.目的指向性。在数学问题解决进程中,为了使数学问题解决具有有效性和可控性,问题解决者必须朝向某一心理目标。

2.操作序列性。数学问题解决中认知操作阶段包括激活阶段―寻求阶段―评价阶段―重组阶段这四个阶段。

3.整合性。在数学问题解决中,为了能形成相应的高级规则用来解决当前的问题,问题解决者对已有的一些规则或原理进行重新组织。

4.迁移性。产生的思维策略和相应的高级规则在数学问题解决中能应用到以后类似的问题或情境中。

三、“问题解决”在初中数学教学中的意义

1.“问题解决”可以为学生营造学习氛围,创设问题情景,充分调动学生学习的主动性,使其成为学习的主动者与主体,使教师发挥组织者参与者,引导者和合作伙伴作用,同时也能丰富课堂内容,使教学方式多样化,让学生感受到数学不但来源于买践,又用之于买践,而且能为学生创设思维发展的空间,提供发挥其创造潜能的机会。

2.“问题解决”增强了师生之间感情的交流,促进了师生互动。在寻求解决问题的最佳方案时,师生共同努力,教师引导,学生积极思考,使师生之间的距离拉得很近。买践证明,良好的情感交流可以推动人趋向学习目标,激发学生的想象力,使创造性思维得到充分发挥。精心设计数学问题,创设适宜的教学情景,使学生的情绪受到感染,利用情感对认知学习的制导作用,来驱动、诱导学生的学习动机,产生为达到目标而迫切学习的心理倾向,学生常常会有教师意想不到的表现和惊人的创造力。

3.“问题解决”加强了学生之间的合作与交流,促进了生生互动。学会与人共处,学会合作,学会交流,是生活在信息化社会的人应具备的基本素质。了解自己、尊重他人,既有良好的合作意识和合作技巧,又善于表达和交流是当今社会中求得生存和发展的一种能力。也是新世纪人才培养模式的重要标志。

四、初中数学问题解决能力培养方法

1.改造例题、习题为开放型的问题。为了让学生在解题中有更广阔的思维空间,尝试进行“问题解决”式研究,可以改造一些常规性题目,打破模式化,使学生不单纯依靠模仿来解决问题,比如可以把条件、结论完整的题目改为只给出条件,先猜想结论,再进行证明的形式,或给出多个条件,首先需要收集、整理、筛选,然后再求解或证明;也可以给出结论,让学生探究条件,或将题目的条件,结论进行推广,演变,形成一个发展性的问题。

2.实现自主探索、合作交流的学习方式。当前阶段正在进行课程调整,除了应当提高学生处理难点的水平,同时应特别强调增强学生具体理解的能力,保证学生掌握具体难点如何调整成数学难点,仅仅为处理过程中的一个角度,另外角度同样应进行关注,特别应强调增强其“双基”能力。

3.注重因材施教。现阶段教育过程中大班教学非常普遍,也就是教室内学生总量大,为老师开展教育工作造成很大阻碍,根本不能真正了解全部学生,此类情况则需要老师从教育过程内应特别强调设置问题的层次性,能够满足学生具有明显差异的标准,能够真正实现因材施教,推动学生综合素质不断提高。

4.鼓励学生去探索、猜想、发现。要想真正实现“问题解决”,就必须培养学生的想象力、创造力和积极的态度进行探索、研究、发现。“问题解决”教学的关键在教师,教师要想方设法鼓励学生敢于思考、敢于探索、善于发现问题、提出问题、解决问题,只有这样才能适应数学的“问题解决”教学。教师在课堂上发问,就会给学生留下这样的印象“教师还善于提出问题呢?我们学生更要有求知、乐知、好知的好习惯。”鼓励、支持、引导学生善于思考,那么初中数学教学便显得不是那样枯燥。

5.教师对数学问题的提法和安排要有教学艺术性。“问题解决”教学必不可少的就是提问题,然而问题的提法也各不相同,提法不同收到的效果自然也不同。也就是说,新颖的、有独到见解的提法往往更能激发学生的探究兴趣。与此同时,问题的安排也不是随随便便的,它要具备一定的艺术性和灵活性,问题的提出必须符合时机,还要顾及学生的兴趣,由简到繁、深人浅出。

数学是一门艺术,设计初中数学课堂教育就是要尊重和关注学生,遵循学生情感发生和发展的过程。“问题解决”教学的提出与实践充分提高了初中数学教学课堂的活力,充分显示出课堂及其教师的正能量,只有充分提高学生的学习兴趣,才能真正实现初中数学课堂的高效发展。

参考文献

[1]郑毓信.数学教育:从理论到实践[M].上海教育出版社,2001.

[2]教育部.全日制义务教育数学课程标准(实验稿)[M].北京师范大学出版社,2001.

第6篇

问题是数学的心脏,数学的真正组成部分是问题和问题的解,当然数学教学的核心就是培养学生解决数学问题的能力。当代心理学理论认为:人的思维结构包括目标系统、材料系统、操作系统、产品系统和监控系统五大成份。其中,监控系统处于支配地位,对其它四个系统起着定向、控制和协调作用。这种监控系统也即元认知,它的发展水平直接制约着思维其它方面的发展,也影响着数学问题解决的质量和效率;同时,学生的元认知也通过数学问题解决得以发展。因此,对数学问题解决中的元认知进行研究就显得尤为必要。

二、元认知在数学问题解决中的作用

1.元认知能修正数学问题解决的目标

数学问题解决具有明确的目标指向性。目标是问题解决者主观经验的知觉,它既是问题解决的出发点,也是问题解决的归宿,它影响和制约着问题解决的进程。因为问题解决者在自拟目标的影响下,将自己正在进行的认知活动作为意识的对象,不断发挥主动性和自觉性对问题解决的进程进行积极的、自觉的监视。

一旦进程与目标不符,而又相信自己的进程时,则将怀疑其目标,对目标必将修改或放弃,以确定新的目标。对目标的修正必须由元认知来进行,通过元认知体验,在元认知知识的基础上,问题解决者要监控其解题计划,制订切实可行的目标结构,致使数学问题解决得以顺利进行。元认知对目标所起的作用是通过定向、调节和控制功能表现出来的。

2.元认知能激活和改组数学问题解决的策略数学问题解决具有明显的策略性。策略是在思维模式的作用下反应出来的,它影响着数学问题解决的进程和质量。问题解决者在解题过程中通过三种方式来操作策略。①激活策略,即以目标的期望为出发点,将材料系统放入知识背景,在操作系统的作用下激活认知结构,选择解题策略;②制订策略,即在元认知知识的基础上,根据材料系统在认知结构中的相似性,寻求数学认知结构中的“相似块”,制订解题策略;③改组策略,即通过对问题解决进程的反馈,问题解决者要进行自我评价,对进程的评价实质上也就是对问题解决策略的评价,一旦对自己的目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行改组。问题解决者在操作策略时,实际上均受元认知的指示和指导。

即通过元认知体验,在元认知知识的基础上检验回顾解题方法,调控解题策略,最终逼近问题目标状态。调控策略的指标是通过策略的可行性、简捷性、有效性反应出来的。

3.元认知能够强化解题者在数学问题解决中的主体意识解题者能否自我激活是关系到问题解决系统能否优化的先决条件。由于数学问题通常有一定的障碍性,这就要求解题者必须发挥主体作用,排除障碍,激发问题解决的欲望。而元认知在问题解决中自始至终存在着内反馈的调节,即通过元认知体验来调动积极性和探究性,因此,元认知能积极监控、调节自身学习活动的思维过程,并逐步强化解题者对问题解决的主体意识。元认知主要通过三种方式来强化解题者的主体意识。①通过元认知知识的导引作用,使解题者能主动审清题意,揭示问题矛盾之所在,使其能主动搜索解题策略;②通过元认知体验的自我启发作用,调动非智力因素的参与,使其能积极超越障碍;③通过元认知的调控作用,来刺激解题者思维模式深层结构的内部运行机制,并通过对解题过程进行自我控制,自我评价,使思维活动成为一种有目的性、可控性的组织活动,这在很大程度上强化了解题者的主体意识,导致问题得以最快、最好的解决。

三、在数学教学中,通过数学问题解决,对学生进行元认知开发的策略

在数学教学中,教师必须强化学生解题的主体意识,使学生有机会去锻炼自己能主动确定解题目标,分析解题任务的能力。使其元认知能力在学生的目标分析和任务调控中得到很好地开发。为此,笔者认为,在数学教学中必须注意以下策略:

1.目标激励和目标强化在数学教学中,教师应当强化学生的目标意识,用目标去激励学生解题的自主性。

在数学问题解决中,首先应当让其明确问题目标,即明确应该达到什么终结状态,然后使学生明确:为了达到问题目标,自己应该做些什么,如果做不到,那么就会失败。这样,通过目标的激励和目标强化,学生就能自觉地确定解题目标,订出解题计划,设计解题策略,调节解题进程。也即有利于学生元认知能力的培养和开发。笔者认为,要对学生进行目标激励和目标强化,必须注意这样几点:①引导学生建构对具体数学问题解决的目标体系,建构目标体系应遵循“小步距”和层次性原则,即将问题解决分成有序的若干阶段,通过对若干阶段的目标构建以及目标实现,一步一步地逼近整个数学问题的解决,使之对数学问题的解决能循序渐进,以便及时通过反馈来调控解题步骤或策略,做到随时失败随时补救,以免功夫白费;②引导学生根据任务或目标状态主动选择有效手段,并使学生意识到,任务或目标不同,采取的手段或策略就不同,让学生学会能主动根据数学问题解决的阶段性去分别选择适宜的手段,致使任务或目标能顺利地完成或达到;③引导学生善于自我评价目标体系,总结解题的经验教训,以便充分利用反馈信息调节以后的解题手段和策略。

2.创设思维场情景,活化问题解决的思维活动所谓创设思维场情景,是指教师必须为学生的思维创造一种良好的内外条件。

其中包括学生所处的内环境(知识经验)和外环境(问题情境),以及内外环境相互作用产生的思维渴求和能力水平。在数学教学中,强调创设思维场情景实际上也就是强调了思维的活跃性、延伸性和发散性;强调了数学问题解决中学生对问题解决路径的搜索性和调控性。因为,问题解决始于问题情境,问题情境的内化则是思维场情景,思维场情景能引领学生解题方向,活化思维活动,有助于发现问题的隐蔽关系,突破解题障碍;更有助于对问题解决进程的反馈和调节。因此,通过创设思维场情景可以激发学生思维的灵活性和迁移性,从而使学生的元认知能力在这种情景中得到有效开发。创设思维场情景的有效策略是创设问题情境。因而,数学教学也就应当是创设问题情境的教学。具体地说,在教学中必须注意这样几点:①创设“小步距”问题情境,注意问题情境的有序性。即创设问题情境要有层次性、分阶段、有步骤地进行,采劝小步距”策略,使之一步一步地逼近整个问题情境的创设;②创设“变式”和“矛盾式”问题情境,注意问题情境的发散性。即创设的问题情景要变式综合,灵活应用,随时揭示矛盾,随时引导学生解决矛盾,让问题情境中充满着矛盾,促使学生主动思维,主动反馈;③创设“精而有效”的问题情境,注意问题情境的策略性。即创设的问题情境应当讲求效益,切忌“泛”而“杂”,应注重其策略性,这有助于学生对策略性知识和手段的掌握;④创设“启发性”问题情境,注意问题情境的延伸性。即通过创设问题情境,使课堂真正地活起来,活跃学生思维,激发学生自求解决问题的积极性、自觉性,强化学生学习的内驱力与动机。

3.构建知识网络,实现认知结构的整体优化

在数学教学中,教师必须沟通教材中知识的内在联系,使知识系统化、深刻化。从不同角度加深对概念的理解,并使新旧知识逐步形成紧密的锁链,比较以“求其异”、“求其同”,形成知识网络,进而从不同角度和方面去激活思维的灵活性、独创性和批判性,发展学生的元认知能力。为此,教师在教学中应遵循“整体----部分----整体”的方法,重视正迁移能力的培养,防止负迁移的干扰。

以较少的道理说明尽可能多的数学现象,减轻教学负担,实现认知结构的整体优化。为此教学中应注重:①认识每单元知识系统的整体结构,理清知识要素间的纵横联系,尤其是隐藏在教材中的概念原理间、字词句段章间的联系规律,分清知识的主干与分支(层次结构);②启发学生归纳、概括、比较解决问题的方法,学会一题多解和一法多用,达到触类旁通、举一反三;③引导学生独立地建立与发展认知结构,对知识要素比较其“同中之异”、“异中之同”,并积极主动地进行思维。

4.注重教学的及时反馈

第7篇

[关键词]教学教学;问题解决;教学设计

数学课堂教学实质上是基于问题解决的教学,问题解决设计的有效性则是课堂教学设计有效性的真实体现。在数学课堂教学质量观上,长期存在着为解题而解题、为练习而练习、为应用而应用的认识误区;在数学课堂教学实践中,存在着为了一味追求解题而盲目设计更多的问题,为了一味追求知识记忆与机械应用而盲目高难度、高速度解题的诸多现实问题,即重视解题的数量,轻视解题的质量。因此,数学教学有效设计的核心在于基于数学问题解决有效质量的设计。

一、问题解决设计的特征

问题解决过程是一种学生基本技能掌握与学习的创造性活动过程,它贯穿于教学过程的始终。因此,数学教学设计应当是“基于问题解决学习”的教学设计。

在数学教学中,教师应当为学生创造更有利于问题解决的条件,在为学生构建好课堂问题系统的同时,尽量为学生的创造性思维提供良好的问题解决的环境或空间。

(一)问题解决的教学信度——程式性

问题解决的教学信度意指学生对问题解决时序上的稳定性。也即学生在问题解决过程中所产生的信服感和定势性。问题解决的程式性是问题解决教学信度的明显表现。教学中,体现程式性的问题解决,学生能够从中得到思维模式的培养与强化,以此产生记忆的功能固着现象,这样问题解决的教学信度便得以提升。

(二)问题解决的教学效度——有效性

问题解决的教学效度意指问题解决质量上的有效性,它具体体现在问题解决结果的正确性、过程的优化性、方法的独到性、条件的普适性等方面。问题解决的教学效度既包含内在效度,即问题解决自身方法系统正确与否以及教学目标达成与否,也包含外在效度,即问题解决模型化后的应用外延大与否以及教学延伸性程度大与否。前者着眼于问题解决本身的质量,后者着眼于数学教学过程的质量。

(三)问题解决的教学难度——研究性

问题解决的教学难度意指问题解决的障碍性或非常规性。这种教学难度既体现在问题本身的非常规性上,更体现在问题解决教学方法的非常规性上。其中,问题解决教学方法上的非常规性具体体现在问题解决方法的独创性、教学情境或问题空间的开扩性、问题探究的挑战性、问题解决思维的变通性、教学逻辑对学习逻辑的统整性以及“会教”对“会学”的引探性等方面。问题解决教学难度的适宜性决定着问题解决教学的研究性。研究性教学或研究性学习形成的前提则是问题解决教学难度的恰当把握,太难与太易都不可能引发探究或挑战意识,更不可能引发研究意识。

(四)问题解决的教学区分度——策略性

问题解决的教学区分度意指问题解决的教学策略在教学效果、教学效率以及教学效益上的差异性。这种差异性既体现在教师问题解决的教学风格与教学质量上,又体现在学生问题解决的学习风格与学习质量上。前者相关于教师的职业素养或教学经验,当然又与教学个性相关;后者相关于学生的认知背景或问题解决的经验累积,并且又与学习个性相关。因此,问题解决的教学区分度是体现教师的个性教学与学生的个性学习的重要指标,也是教师策略性教学与学生策略性学习的重要表现,更是区分不同教师教学水平与不同学生学习水平的重要因素。

二、问题解决教学设计的类型

问题解决教学设计是“基于学生问题解决学习”的教学设计,教师问题解决的教学始终着眼于学生问题解决的学习,因此,教师以什么方式进行问题解决的教学就决定了学生会以什么方式进行问题解决的学习。一般而论,从学生问题解决学习方式的角度,问题解决教学设计的类型主要有知识接受型设计、规律发现型设计以及课题研究型设计三种。这三种类型无好坏之分,仅仅在于各自任务的侧重点不同、各自所处教学过程中的具体情境有所不同而已。教师的功夫就体现在适时、适地、适人地对其进行合理选用。

(一)知识接受型设计

知识接受型设计的主要意图是按照教师预先构想好的知识传授或知识强化方案引导学生解决问题,学生通过这种构想方案进行问题解决的知识接受学习。这种设计指向“在做中有意义学习”,即在知识的应用中掌握知识的意义,把握知识的应用领域,使知识形成强有力的条件系统,由此形成一个在意义上、态度上、技能上相互联系的经验系统。

知识接受型设计主要适宜于授新过程,尤其适宜于教学过程中迁移性问题、反馈性问题的学习。学生通过这种问题解决的学习既能有意义接受知识的深层内涵,又能有意义接受知识的条件范畴,更能有意义接受知识的方法属性。知识接受型设计的根本目标在于让学生能将问题解决学习中所获得的知识有效迁移到其他问题解决过程中,使其能扩大知识的外在效度。

(二)规律发现型设计

规律发现型设计的主要意图是教师引导学生创造性地自主解决问题,让学生在问题解决过程中产生自主学习的意识,并强化其创新意识。这种设计指向“在做中发现规律,明确学习路线”,即在做中发现问题、凸显认知冲突。又在做中产生灵感、发现经验性结论。这种设计强调问题解决的质量,淡化问题解决的数量;强调问题解决的过程,淡化问题解决的结果;强调学生问题解决的学习,淡化教师问题解决的传授。

规律发现型设计主要适宜于授新前后的过渡和总结强化性学习过程。尤其适宜于教学过程中过渡性问题、强化性问题、变异式问题的学习。学生通过这种问题解决的学习能够活化其思维的创造性与灵敏性,更能激发问题解决的动机和兴趣意识。规律发现型设计的根本目标在于让学生在问题解决学习中获得探究问题解决的具体方法,并能激活元认知的参与意识,强化问题解决过程中的认知体验意识,进而强化其问题解决的成功感或成就感,促成学生“会解题”并“乐解题”。转

(三)课题研究型设计

课题研究型设计的主要意图在于教师指导学生通过从真实生活情境中确定研究课题,让学生在课题设计与课题研究中主动获取知识并应用知识。这种设计指向“在做中研究性学习”,即强调学生通过实践,认识数学的真实性与生动性,真正领悟“数学来自于生活,又必须回归于生活,数学在生活中赋予活性与灵性;数学来自于大众,又必须回归于大众,数学在大众中得以完善和发展”这一精神实质。无论把数学当作一种社会文化,还是当作科学或艺术,我们都需要去研究、去探索。如果把数学当作一种社会文化,那么社会文化就不应当是原理加例题就可以通晓的,它有许许多多的奥秘需要去研究,需要研究者去整合它所涉及的多种学习领域,它能折射出无穷的社会文化气息,因此,要通晓数学文化,我们就必须去研究数学文化,要研究数学文化,就必须去探索有效的数学问题或有关数学的现实课题。如果把数学当作一种科学技术,那么科学的价值就在于探索,在于求真,技术的价值就在于寻求有效,这一切都需要创新,真实问题或现实课题则是创新的土壤,课题研究则是创新的根源。因此。要通晓数学科学或技术,我们就必须去求真、求善,去寻求它的有效性和应用的广泛性。如果把数学当作一种艺术,那么艺术的生命在于创造,在于求美,“数学学习的每一活动过程及其细节都讲究精湛惟妙,讲究个性,讲究感染力,以达炉火纯青之境界”,这就需要去创新。去寻找数学的和谐美、对称美与简洁美等。课题研究则是求美的主渠道,因此,数学学习既是一个求真、求善的过程,更是一个求美的过程,它是一个真善美的结合体,这一结合体的形成与感悟有赖于数学课题的研究性学习,只有通过课题研究性学习,学生数学创新能力才能生成,自主学习意识与合作探究意识才能得以有效强化。

课题研究型设计主要适宜于数学实验课或实践活动课,也适宜于授新后的延伸性教学环节,尤其适宜于教学过程中延伸性问题的学习。学生通过这种问题解决的学习,能够学会搜集资料、整理资料与分析资料的基本技能,也能够由课内的学会延伸到课外的乐学与会学,使课内知识与课外见识能得以有效整合。

三、问题解决教学程式的设计

问题解决是以个体思维为内涵,以目标为指向的认知活动。无论是以机能主义心理学家桑代克为代表的联结说,还是以格式塔心理学家苛勒为代表的顿悟说,对数学问题解决的过程都能起一定的方法指导性作用。

各种学术领域的学者们对问题解决的程式描述各异,但综述起来我们可以抽出共同的成份,即:情境激活程式一方案构想程式—假定施行程式一系统改良程式。这种程式构建的出发点是,把数学问题解决作为一种个体的高级思维活动。既体现了问题解决中认知与元认知的统一,也体现了认知与非认知的统一。

(一)情境激活程式——初见者的新奇

情境激活程式属于问题解决出发点的形成阶段,这一阶段的教学任务在于创设好问题解决的情境,从而引发全体学生主动参与审题。数学问题并非“读而知之”,而应“思而知之”,所以审题并非读题而了之,教师应以读题为手段,以引发学生回顾题中每一句话所牵涉的知识含量为目的,让题中所有知识含量都能通过审题凸显出来,以此激活学生思维的主动参与,有效调用学生的认知经验系统。

情境激活程式中教师应引发学生产生对问题认知的兴趣感,引发学生对问题解决的探究动机。为此,教师自身所扮演的角色是至关重要的。在此程式中,教师对问题的认知应具有初见者的新奇感,因为只有教师的新奇感才有可能引发学生的新奇感,又只有师生新奇感的产生才有可能促成问题解决初始阶段情境激活机制的生成。

(二)方案构想程式——未知者的茫然

方案构想程式属于问题解决的试探阶段,这一阶段的教学任务在于搜索知识经验系统中的相关信息,引发全体学生主动探求方法,以此形成所有学生解题方法都能涵盖的方法系统,再由学生择优选取其中的最佳方案。这一阶段中,教师应尊重每一位学生的发言权,让每一位学生都能分享各自的方法与思维资源。

方案构想程式中,教师应引发学生主动探究,使他们积极发表各自的观点,但教师必须以学生“点到为止”来点评和监控每一位学生的发言,争取为每一位发言者提供“点到为止”的发言机会。这一阶段中,师生应当是处于一种平等的对话关系,尤其是教师始终应当充当方案陌生者的角色,以未知者的茫然来创设“愤悱”的自主探究空间。

(三)假定施行程式——发现者的惊奇

假定施行程式属于问题解决中学生自主择优方案的实施或证明阶段,这一阶段的教学任务在于师生共做或让择优选取者口头报告其问题解决的思维过程。这一阶段中,教师应尊重学生的自主与合作交流权力,暂不能抛出自己的预设方案。只有如此,才能真正体现课堂教学中学生主体性的实效发挥。

假定施行程式中,教师应引发学生对自己每一闪光点的认同,相信自己会发展,相信自己已发展,从问题解决中感受到自己对问题解决的点滴成功处。以此强化学生数学课堂教学中的成功体验。这一阶段中,教师应引发学生以发现者的身份去点评问题解决的施行过程,既发现其施行过程的有效度,也发现其施行结果的正确度。为此,教师自身应以发现者的惊奇感去引发学生对问题解决探究与发现后惊奇感的产生。

(四)系统改良程式——胜利者的满足