欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

概率论论文范文

时间:2022-12-13 14:41:39

序论:在您撰写概率论论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

概率论论文

第1篇

关键词:独立随机过程;计数系统;归纳法;保险业

概率论是一门应用非常广泛的学科。在数学史上,它的产生是以帕斯卡和费马在1654年的七封通信为标志的。由于这些信件中所解决的问题多是与赌博有关的点数问题,因此人们总是把概率论的产生归功于赌博这项机遇游戏。但考古学发现告诉我们,赌博游戏早在文明初期就已经存在了,迄今已有几千年的历史,而概率论从诞生至今不过三百余年,这说明赌博并不是概率论产生的决定性条件。在从赌博出现到概率论产生之间的这段“空白”期,必定还有一些十分关键的因素正在孕育之中。那么这些因素是什么?换句话说,需要具备哪些先决条件,概率论才能得以形成?

一独立随机过程的出现

对概率论而言,两个最主要的概念就是独立性和随机性[1]。概率论是从研究古典概型开始的,它所涉及的研究对象是大量的独立随机过程。通过对这些过程中出现的问题的解决,概率理论体系才逐渐地建立起来。因此要考察概率论的产生条件,我们首先应当对独立随机过程的产生有充分的了解。

事实上,这种过程的雏形早在原始社会就已经存在了,那时的占卜师们使用动物的趾骨作为占卜工具,将一个或多个趾骨投掷出去,趾骨落地后的不同形状指示神对人事的不同意见。由于投掷趾骨这个过程所产生的结果具有不可预测性,而每次投掷的结果也互不影响,这与我们今天投掷骰子的基本原理相当,因此趾骨可以被看作是骰子的雏形。但是由于趾骨形状的规则性较差,各种结果出现的机率不完全相同(即不具备等可能性),所以趾骨产生的随机过程还不是我们今天意义上的独立随机过程。加之趾骨作为一种占卜工具,其本身具有神圣的地位,普通人不可能轻易使用,这也在某种程度上阻碍了人们对随机过程的认识。

随着社会的进步和文明的发展,骰子变得越来越普遍,不仅数量增多,规则性也日益精良,此时它已不再是一件神圣的器具而逐渐成为普通大众的日常用具。从原理上看,只要一枚骰子是质地均匀的,它就可以产生一系列标准的独立随机过程。这些过程具备良好的性质(独立性、随机性、等可能性),是进行概率研究的理想对象。如果经常接触这些随机过程,就很有可能从中发现某些规律性。实际上,通过对骰子的研究我们确实发现了一些有趣的现象。在考古出土的骰子当中,有一些被证明是用于赌博的工具,它们的形状规则而质地却不均匀,也就是说,骰子的重心并不在其几何中心。可以想像,如果骰子的某一面较重,则其对面朝上的机率就会增大,这种骰子明显是为了赌博时用于作弊。而从另一个角度看,如果古代人知道质地不均匀的骰子产生各个结果的可能性不同,那么他们必定清楚一个均匀的骰子产生任何一个结果的机率是相等的。也就是说,经常从事赌博的人必然可以通过大量的游戏过程,意识到掷骰子所得到的结果具有某种规律性,并且这种规律性还可以通过改变骰子的质地而得到相应的改变。虽然古代人的这些意识还只停留在经验总结的水平上,却不得不承认这是一种最原始的概率思想。

赌博游戏存在的时间之长、范围之广、形式之多令人惊讶。但有如此众多的人沉迷于这种游戏活动,也在客观上积累了大量的可供学者进行研究的随机过程。更为重要的是,

在进行赌博的过程中,或许是受到经济利益的驱使,已经开始有人试图解开骰子的奥秘。意大利数学家卡尔达诺就是其中的一位。他本人是个大赌徒,嗜赌如命,但他却具有极高的数学天分。在赌博的过程中,卡尔达诺充分发挥了他的数学才能,研究可以常胜不输的方法。据说他曾参加过这样一种赌法:把两颗骰子掷出去,以每个骰子朝上的点数之和作为赌的内容。那么,赌注下在多少点上最有利?

两个骰子朝上的面共有36种可能,点数之和分别为2~12共11种,从上图可知,7位于此六阶矩阵的对角线上,它出现的概率为6/36=1/6,大于其他点数出现的概率,因此卡尔达诺预言说押7最好。这种思想今天看来很简单,但在当时却是很杰出的。他还以自己丰富的实践经验为基础,写成了全面探讨赌博的《机遇博奕》(LiberdeLudoAleae英译为TheBookofGameofChance)一书,书中记载了他研究赌博的全部成果,并且明确指出骰子应为“诚实的”(honest),即六个面出现的机会相等,以便在此基础上研究掷多粒骰子的等可能结果数[2]。

这些实例充分说明,赌博曾对概率论的产生起过积极的作用。这可能就是人们在谈到概率论时总是把它与赌博联系在一起的缘故吧。但是我们应该认识到,赌博的价值并不在于其作为一种游戏的娱乐作用,而在于这种机遇游戏的过程实际上就是良好的独立随机过程。只有出现了独立随机过程,概率论才有了最初的研究对象。而概率论也的确是在解决机遇游戏中出现的各种问题的基础上建立起自己的理论体系的。因此在概率论的孕育期,可以作为一种模型进行研究的机遇游戏过程即独立随机过程的出现是概率论得以产生的一个重要前提条件。

二先进计数系统的出现

前面曾经提到,独立随机过程的出现并不是概率论诞生的决定性因素。职称论文仅有概率思想而不能将概率结果表达出来,也不能形成完整的理论。概率论是一门以计算见长的数学分支,计算过程中需要运用大量的加法和乘法原理(组合数学原理)进行纯数字运算。对于现代人来说,概率计算并不是一件难事。但是对于16世纪以前的人来说,计算却是十分困难的,原因就在于古代缺乏简便的计数系统。当时的计数符号既繁琐又落后,书写和使用都很不方便,只能用来做简单的记录,一旦数目增大,运算复杂,这些原始的符号就尽显弊端了。而没有简便的计数符号,进行概率计算将是十分困难的事,因此计数符号是否先进也在一定程度上决定着概率论的形成。

对于这一点,现代人可能不容易体会得到,究竟古代的计数符号复杂到什么程度呢?我们可以以古罗马的计数系统为例来说明。

古罗马的计数系统是一种现在最为人们熟悉的简单分群数系,大约形成于纪元前后。罗马人创造了一种由7个基本符号组成的5进与10进的混合进制记数法,即

IVXLCDM

1510501005001000

在表示其他数字时采取符号重复的办法,如Ⅲ表示3,XX表示20,CC表示200等。但如果数字较大表示起来就相当复杂了,比如:1999=MDCCCCLXXXXVIIII

后来为了简化这种复杂的表示法,罗马人又引进了减法原则,即在一个较大的单位前放一个较小单位表示两者之差,如Ⅳ表示4,CM表示900,则1999=MCMXCIX

如果要计算235×4=940,现代的竖式是

而公元8世纪时英国学者阿尔琴演算同一道题的过程则要复杂得多:古罗马数字对于这样一个既不含分数和小数,数字又很简单(只有三位数)的乘法运算处理起来尚且如此复杂,可以想象,即使数学家有足够的时间和耐心,要解决概率计算里涉及的大量纯数字运算也是一件太耗费精力的事。在这种情况下想要作出成果,数学家们的时间不是用来研究理论而只能是忙于应付这些繁重的计算工作了。显然古罗马的计数系统并不适合于进行计算,而事实上,欧洲的代数学相比几何学而言迟迟没能发展起来,很大程度上也是由于受到这种落后的计数系统的限制。不仅仅是古罗马数字,在人类文明史上出现过的其他几种计数系统(如古埃及、古巴比伦等的计数系统)也由于符号过于复杂,同样不能承担进行大量计算的任务。

相反,以位值制为基本原理的阿拉伯数字则比古罗马数字以及古代其他的计数系统要先进得多,它不但书写简便,而且非常有利于加法、乘法的运算及小数和分数的表示。从上面的例子可以看出,它的使用可以大大节省运算时间,提高运算效率。正是由于使用了这种先进的计数符号,阿拉伯数字的发明者———古印度人的组合数学(组合数学原理是概率计算运用较多的一种数学工具)才得以领先欧洲人许多。据记载,印度人,特别是公元前三百年左右的耆那数学家就由于宗教原因开展了对排列与组合的研究。公元四百年,印度人就已经掌握了抽样与骰子之间的关系(比欧洲人早一千二百年)。而直到公元8世纪时,商业活动和战争才将这种先进的数字符号带到了西班牙,这些符号又经过了八百年的演化,终于在16世纪定型为今天的样子。

数字符号的简单与否对概率论究竟有什么样的影响,我们不妨举例说明:

问:有n个人,当n为多少时,至少有两人生日相同的概率大于二分之一?

假设所有人生日均不相同的概率为P,则

P=(365/365)×(364/365)×⋯×[(365-n+1)/365]

而题中所求之概率P(n)=1-P=1-(365/365)×(364/365)×⋯×[(365-n+1)/365]

通过计算得出结论,当n=23时,P(n)=0.51>0.5,因此答案为23。

这是概率论中著名的“生日问题”,也是一种很典型的概率计算问题。从它的计算过程中我们不难看出,数字运算在概率论中占有重要的地位。如果使用古罗马的计数法,这样一个概率问题从表达到计算都会相当繁琐,以至于它的求解几乎是不可能的。

对于阿拉伯数字的伟大功绩,大数学家拉普拉斯(Laplace)有如下评价:“用不多的记号表示全部的数的思想,赋予它的除了形式上的意义外,还有位置上的意义。它是如此绝妙非常,正是由于这种简易难以估量⋯⋯我们显然看出其引进之多么不易。”[3]阿拉伯数字的出现为概率的表达和计算扫清了阻碍,如果没有这些简便的符号,概率论可能还只停留在概率思想的阶段。正是由于使用了可以简洁地表示分数和小数的阿拉伯数字,才使概率思想得以通过形式化的符号清晰地表现出来并逐渐形成理论体系。在概率论的孕育阶段,这种形式化的过程是十分必要的,它使得对概率的理解和计算成为可能,因此先进的计数系统对概率论的形成和发展都起着重要的作用。

三概率论产生的方法论基础———归纳法

除了需要具备上述因素以外,概率论的形成还需要具备归纳思维。概率论是一门具有明显二重性的理论体系:“一方面它反映了从大量机遇现象中抽象出来的稳定的规律性;另一方面它关系着人们对证明命题的证据或方法的相信程度”。[4]这两方面特性都以归纳法作为最基本的研究方法,因此可以说,归纳法是概率论的方法论基础,概率论的产生必须在归纳法被广泛运用的前提下才成为可能。归纳法虽然是与演绎法同时存在的逻辑方法,但在文艺复兴以前,占主导地位的推理方式是演绎思维(不具有扩展性),归纳思维是不受重视的。直到文艺复兴运动以后,这种状况才被打破。归纳法因其具有扩展性而逐渐成为进行科学发现的主导方法。

从演绎到归纳,这个过程实际上是一种思维方式的转变过程,虽然转变是在潜移默化中完成的,但转变本身对概率论的出现却起着决定性的作用。我们可以通过考察“概率论”(probability)一词的词根“可能的”(probable)来说明这种转变。在古希腊“,probable”并不是今天的这个含义,它曾意味着“可靠的”或“可取的”,比如说一位医生是“probable”就是指这位医生是可以信赖的。但到了中世纪,这个词的含义发生了变化,它已经和权威联系在一起了。当时的人们在判断事情的时候不是依靠思考或证据而是盲目地相信权威,相信更早的先人所说的话。在这种情况下,如果说某个命题或某个事件是“probable”,就是说它可以被权威的学者或《圣经》之类的权威著作所证明。而经过了文艺复兴之后,人们终于意识到对自然界进行探索(而不是崇拜权威)才是最有价值的事,正如伽利略所说的那样:“当我们得到自然界的意志时,权威是没有意义的。”[5]因此,“probable”才逐渐与权威脱离了关系。15、16世纪时它已经具有了今天的含义“可能的”,不过这种可能性不再是权威而是基于人们对自然界的认识基础之上的。

“probable”一词的演化体现了人们认识事物方式的转变过程。当然这并不是说,文艺复兴以前没有归纳思维。留学生论文当一个人看到天黑的时候他会自然想到太阳落山了,因为每天太阳落山后天都会黑。这种归纳的能力是与生俱来的,即使中世纪的人们思想受到了禁锢,这种能力却还不至消失。而抛弃了权威的人们比先辈们的进步之处在于,他们是用归纳法(而不是演绎法)来研究自然界和社会现象的。他们将各种现象当作是自然或社会的“特征”,进而把特征看作是某种更深层的内存原因的外在表现。通过使用归纳推理进行研究,他们就可以发现这些内在原因,从而达到揭开自然界奥秘和了解社会运行规律的目的。于是在好奇心的驱使之下,归纳思维被充分地激发出来。而这一点恰恰是概率论得已实现的必要条件。从概率论的第一重特性中可以看出,概率论所研究的对象是大量的随机现象,如赌博游戏中掷骰子的点数,城市人口的出生和死亡人数等等。这些多数来自于人们社会活动的记录都为概率论进行统计研究提供了必须的数据资料。虽然这些记录的收集与整理其目的并不在于发现什么规律,但善于运用归纳思维的人却能从中挖掘出有价值的研究素材。例如,早在16世纪,意大利数学家卡尔达诺就在频繁的赌博过程中发现了骰子的某些规律性并在《机遇博奕》一书中加以阐述;17世纪,英国商人J·格龙特通过对定期公布的伦敦居民死亡公告的分析研究,发现了死亡率呈现出的某种规律性[6];莱布尼兹在对法律案件进行研究时也注意到某个地区的犯罪率在一定时期内趋向于一致性。如果没有很好的归纳分析的能力,想要从大量繁杂的数据中抽象出规律是不可能的。而事实上,在17世纪60年代左右,归纳法作为一种研究方法已经深入人心,多数科学家和社会学家都在不自觉地使用归纳的推理方法分析统计数据。除了上述两人(格龙特和莱布尼兹)外,统计工作还吸引了如惠更斯、伯努利、哈雷等一大批优秀学者。正是由于许多人都具备了运用归纳法进行推理的能力,才能够把各自领域中看似毫无秩序的资料有目的地进行整理和提炼,并得到极为相似的结论:随机现象并不是完全无规律的,大量的随机现象的集合往往表现出某种稳定的规律性。概率论的统计规律正是在这种情况下被发现的。

概率论的第二重特性同样离不开归纳法的使用。既然概率论反映的是人们对证明命题的证据的相信程度(即置信度),那么首先应该知道证据是什么,证据从何而来。事实上,证据的获得就是依靠归纳法来实现的。在对自然界特征的认识达到一定程度的情况下,人们会根据现有的资料作出一些推理,这个推理的过程本身就是归纳的过程。当假设被提出之后,所有可以对其合理性提供支持的材料就成了证据,即证据首先是相对于假设而言的。如果没有归纳法的使用,证据也就不存在了。由于归纳推理在前提为真的情况下不能确保结论必然为真,因此证据对假设的支持度总是有限的。在这种情况下,使用归纳推理得到的命题的合理性便不能得到充分的保障。而概率论的第二重特性就是针对这个问题的,证据究竟在多大程度上能够为假设提供支持?这些证据本身的可信度有多少?为解决归纳问题而形成的概率理论对后来的自然科学和逻辑学的发展都起到了重要的作用。

归纳法的使用为概率论的形成提供了方法论基础。它一方面使得概率的统计规律得以被发现,另一方面,也使概率论本身具有了方法论意义。从时间上看,概率论正是在归纳法被普遍运用的年代开始萌芽的。因此,作为一种具有扩展性的研究方法,归纳法为概率论的诞生提供了坚实的思维保障和方法论保障,在概率论的形成过程中,这种保障具有不容忽视的地位。四社会需求对概率论形成的促进作用

与前面述及的几点因素相比,社会因素显然不能作为概率论产生的内在因素,而只能被当作是一种外在因素。但从概率论发展的过程来看,作为一种与实际生活紧密相关的学科,其理论体系在相当大的程度上是基于对社会和经济问题的研究而形成的,因此对实际问题的解决始终是概率理论形成的一种外在动力。在这一点上,社会因素与概率理论形成了一种互动的关系,它们需要彼此相结合才能得到各自的良好发展。从17、18世纪概率论的初期阶段来看,社会经济的需求对概率论的促进作用是相当巨大的[7]。

在社会需求中,最主要的是来自保险业的需求。保险业早在奴隶社会便已有雏型,古埃及、古巴比伦、古代中国都曾出现过集体交纳税金以应付突发事件的情形。到了14世纪,随着海上贸易的迅速发展,在各主要海上贸易国先后形成了海上保险这种最早的保险形式。其后,火灾保险、人寿保险也相继诞生。各种保险虽形式各异,但原理相同,都是靠收取保金来分担风险的。以海上保险为例,经营海上贸易的船主向保险机构(保险公司)交纳一笔投保金,若货船安全抵达目的地,则投保金归保险机构所有;若途中货船遭遇意外而使船主蒙受损失,则由保险机构根据损失情况予以船主相应的赔偿。这样做的目的是为了将海上贸易的巨大风险转由两方(即船主与保险公司)共同承担[8]。从这个过程中可以看出,对保险公司而言,只要船只不出事,那么盈利将是肯定的;对船主而言,即使船只出事,也可以不必由自己承担全部损失。

从性质上看,从事这种事业实际上就是一种赌博行为,两方都面临巨大风险。而这种涉及不确定因素的随机事件恰恰属于概率论的研究范围。工作总结由于保险业是一项于双方都有利的事业,因此在16、17世纪得到了快速的发展,欧洲各主要的海上贸易国如英国、法国、意大利等都纷纷成立保险公司,以支持海上贸易的发展。此外还出现了专门为他人解决商业中利率问题的“精算师”。不过在保险业刚起步的时候,并没有合理的概率理论为保金的制定提供指导,最初确定投保金和赔偿金的数额全凭经验,因此曾经出现过很长时间的混乱局面。而这样做的直接后果就是不可避免地导致经济损失。例如在17世纪,养老金的计算就是一个焦点问题。荷兰是当时欧洲最著名的养老胜地和避难场所,但其养老金的计算却极为糟糕,以致政府连年亏损。这种状况一直持续到18世纪,概率理论有了相当的发展,而统计工作也日渐完善之后,情况才有所改观[9]。在结合大量统计数据的前提下,运用概率理论进行分析和计算,由此得到的结果才更有可能保证投资者的经济利益。

我们可以举一个人寿保险的例子来说明概率理论是如何应用到保险事业中来的:2500个同年龄段的人参加人寿保险,每人每年1月交投保费12元。如果投保人当年死亡,则其家属可获赔2000元。假设参加投保的人死亡率为0.002,那么保险公司赔本的概率是多少?

从直观上看,如果当年的死亡人数不超过15人,则保险公司肯定获利,反之,则赔本。不过单凭经验是绝对不行的,必需有一套合理的理论来帮助处理此类问题。根据所给条件,每年的投保费总收入为2500×12=30000(元),当死亡人数n≥15时不能盈利。令所求之概率为P,由二项分布的计算公式可以得出P(n≥15)=0.000069。也就是说,如果按以上条件进行投保并且不出现特别重大的意外,则保险公司有几乎百分之百的可能性会盈利。

这个问题就是通过将概率理论运用到关于人口死亡的统计结果之上从而得到解决的。这个简单的例子告诉我们,概率理论对保险业的发展有着相当重要的指导作用。根据统计结果来确定在什么样的条件下保险公司才能盈利是概率理论对保险业最主要的贡献,它可以计算出一项保险业务在具备哪些条件的情况下会使保险公司获得收益,并进而保证保险公司的经营活动进入良性循环的轨道。从另一方面看,最初保险业的快速发展与其不具有基本的理论依据是极不协调的,这很容易导致保险公司由于决策失误而蒙受经济损失。因此保险事业迫切需要有合理的数学理论作为指导。在当时的社会环境下,由科学家参与解决实际问题是非常有效的,而由保险所产生的实际问题确实曾吸引了当时众多优秀数学家的目光。在1700-1800年间,包括欧拉、伯努利兄弟、棣莫弗(deMoivre)、高斯等在内的许多著名学者都曾对保险问题进行过研究,这些研究的成果极大地充实了概率理论本身。

可以说,经济因素和概率理论在彼此结合的过程中形成了良好的互动关系,一方面数学家们可以运用已有的理论解决现实问题。另一方面,新问题的出现也大大刺激了新理论的诞生。概率论的应用为保险业的合理化、规范化提供了保证,正是由于有了概率论作理论指导,保险业的发展才能够步入正轨。反过来,保险业所出现的新的实际问题,也在客观上促进了概率理论的进一步完善。这样,对于概率论的发展来说,保险业的需求便顺理成章地成为了一个巨大的动力。

五总结

概率论的产生就像它的理论那样是一种大量偶然因素结合作用下的必然结果。首先,赌博这种机遇游戏提供了一种良好的独立随机过程,在进行赌博的过程中,最原始的概率思想被激发出来;其次,先进的计数系统为概率思想的表达扫清了阻碍,也使得这些思想得以形式化并形成系统的理论。当然在获得概率思想的过程中,思维方式的转变和研究方法的进步才是最根本的关键性条件。如果没有归纳法的使用,即使存在着良好的独立随机过程也不可能使人们认识到大量统计数据中所隐藏着的规律性。此外,社会经济的发展,需要借助数学工具解决许多类似保险金的计算这样的实际问题,而这些吸引了众多优秀数学家们兴趣的问题对于概率论的形成是功不可没的,它大大刺激了概率理论的发展,使概率论的理论体系得到了极大的完善。上述四个因素都是概率论产生的重要条件,但是它们彼此之间并没有明显的时间上的先后顺序,最初它们的发展是各自独立的,但是随后这些条件逐渐结合在一起,使得原本零散的概率思想开始系统化、条理化。从概率论的历史来看,这几种因素的结合点就是17世纪末至18世纪初,因此概率论在这个时间诞生是很自然的事。

了解概率论的产生条件对于我们理解概率论在当今社会的重大意义有很好的帮助。今天,随着概率理论的广泛应用,它已不仅仅是一种用于解决实际问题的工具,而上升为具有重大认识论意义的学科。概率论不仅改变了人们研究问题的方法,更改变了人们看待世界的角度。这个世界不是绝对必然的,它充斥着大量的偶然性,所谓规律也只是在相当的程度上被我们所接受和信任的命题而已。运用概率,我们就可以避免由归纳法和决定论带来的许多问题和争论。科学发现的确需要偶然性,现代科学向我们证明,概率理念和概率方法已经成为进行科学研究的一项重要手段。

【参考文献】

[1]IanHacking.AnIntroductiontoProbabilityandInductiveLogic[M].CambridgeUniversityPress,2001.23.

[2]陈希孺.数理统计学小史[J].数理统计与管理,1998,17(2):61-62.

[3]张楚廷.数学方法论[M].长沙:湖南科学技术出版社,1989.272-274.

[4]IanHacking.TheEmergenceofProbability[M].CambridgeUni-versityPress,2001.1.

[5]莫里斯·克莱因.古今数学思想(第二册)[M].上海:上海科学技术出版社,2002.35.

[6]柳延延.现代科学方法的两个源头[J].自然科学史研究,1996,15(4):310-311.

[7]NeilSchlager.ScienceandItsTimes.Vol4:205-206,Vol5:205-208.GaleGroup,2001.

第2篇

按照应用性为主的教学目的要求,在概率论与数理统计教学过程中,应该以培养学生应用概率论与数理统计方法解决实际问题的能力为出发点,使学生掌握概率论的基本知识和理解统计方法的基本思想,并将理论的学习转化成一定的统计应用能力。随着目前统计工作所面临的数据日益庞大,传统教学中的计算公式已经很难使用手工计算的方式进行求解,因此借助于计算机及统计软件完成统计计算,分析统计结果、做出统计推断便成为统计教学中不可忽视的一个手段。使用软件辅助概率论与数理统计的教学能使课程中的数据处理和数值计算更简易、更精确。伴随着计算机技术及数学软件的发展,使得诸多的统计分析借助数学软件得以实现,如参数估计、假设检验、方差分析和回归分析等计算问题,也无需担心大量的统计数据带来的计算量等问题。同时,在高等教育统计教学中应用统计软件,有利于培养学生学习统计、计算机及软件等专业课的兴趣,提高学生的计算能力和利用专业知识解决实际问题的能力,科学整合统计教学内容,促进统计教学面向社会需要,提升学生的实践能力。在教学中进行软件的训练也能为学生将来的工作打下初步的基础,为了更好进行概率论与数理统计的教学和实践,近年来新编教材也增加了数学软件的内容,在概率论与数理统计课程教学中使用数学软件已成为改革发展的趋势。在课堂教学中,为了让学生加深对理论的理解,实践环节的设置变得非常关键,概率论与数理统计课程中加入数学实验能很好的填补学生在理论和实践之间的空白。数学实验的开展可以在数学教育中体现学生的主体意识,让学生做到边学边用,提高学生学习的趣味性、体现数学教育的时代性。因此,将数学实验融入概率论与数理统计教学,是概率论与数理统计教学改革中非常值得探讨和研究的课题。根据概率论与数理统计课程的特点,数学实验的内容设计可以和案例教学方法进行有机结合。案例式教学能解决概率知识综合运用的问题,能丰富课程内容、加深学生对知识的理解。教学案例能将所学知识有机联系起来,使课程的各部分不再是孤立的,通过对案例设置问题的求解,便能使学生完成由学概率论与数理统计理论到用概率论与数理统计解决问题的转变。在解决实际问题的过程中辅以软件进行数值计算试验,能最大限度发挥软件的优势,使学生学以致用,将理论学习与实际应用有机结合起来。在传统概率论与数理统计教学过程中,概率论与数理统计课程计算量大一直是困扰课堂教学的难点问题,如二项分布,若试验次数较多,其中的具体概率计算将变得十分复杂。复杂的计算往往使得教师的教学重点发生偏移,侧重课后习题计算的处理,使得课程的设计重点偏向排列组合公式的计算。另外在教学过程中,前后知识的联系对初学者也是一个障碍,比如条件概率等基本公式在讨论多元随机变量时还会用到,但在教学实践中我们会发现,由于缺少互相联系的教学实例,学生一般都是将这两部分分开来学习,不习惯将前面的知识和随机变量进行有机结合。因此设计恰当的案例,将知识前后贯通是教师面临的重要任务。

2软件介绍

在强调学生为主体的实践式教学设计中,教师设计案例的求解一般要选择合适的软件进行辅助,当前数学软件众多、功能强大,如综合性软件Mat-lab,统计专业软件SPSS、SAS等。对于专业数学软件一般要先进行软件的学习才能用来解决实际问题,对于概率论与数理统计这样一门独立的课程,显然不宜专门来进行软件的培训,为了应对实践教学课堂应用,简单易学且容易配置的软件能最大限度实现教学任务。在此以Excel为例介绍案例式教学和利用Excel进行软件试验的一点尝试。Excel使用简便,基本不涉及程序的编制,在图形化界面下进行操作,且具备有强大的图形功能,便于概率结果的呈现和分析。Excel有丰富的概率函数,能帮助用户进行各种类型的概率计算,或进行随机模拟来学习概率论与数理统计。Excel可以计算大部分常用理论分布的概率密度函数PDF、累积分布函数CDF以及模拟产生服从常用概率分布的随机数据。如果能够正确使用,Excel可以成为非常强大的学习工具。选用Excel作为概率论与数理统计教学辅助软件的另一个原因是作为微软Office工具之一,大部分学生均了解Excel的使用,因此不用进行软件的教学即可用来解决实际问题,在学习过程中也能进一步促进学生对软件的使用增强他们解决实际问题的能力。下面介绍一个利用Excel辅助的案例式实验教学设计实例。为了使数学实验背景贴近学生的学习生活,以考试中选择题成绩分析为例。背景分析:考试是每个学生都经历的学习过程,其中选择题是经常遇到的类型,选择题的设计与概率知识之间有密切的关系。通过与学生密切相关的问题引入概率教学,能极大激发学生的学习兴趣。问题设计:选择题在解答时不同于填空题或者解答题,因为在完全不会的情况下仍有可能靠猜测得到正确的答案,那如何来评估选择题在考试中的效度,可以使用什么样的概率论与数理统计的基本知识予以研究?

3实验教学案例设计

首先提出基本假设,考试时一个选择题有4个选项,仅有一个选项是正确的,如果不会做就随机作答,因此在不会做题的情况下随机选择答案有25%的可能性得到正确答案,即从卷面上看该题做对了,对于老师来说,按照成绩评价学生实际知识水平非常重要,因此需要评估在答案正确的前提下求学生实际会做该题的概率。图像显示出选择题答案正确而显示被试者会做该题的概率一直大于被试者实际会做该题的概率,说明选择题容易高估被试者的水平,为了有效区分被试者的不同程度,需要适当调节题目的难度来区分被试者是不是真的会做。作为一个例子,若学生会做与不会做的概率相同,取x=0.5,则容易计算出P(A|B)=0.8,即实际会做概率为0.5时,选择题表现出来的得分可能为0.8分。对于数学实验来说,让学生自己对该案例进一步讨论,亲自实践在软件辅助下的概率解题,对促进学生将理论用于实际非常重要。在课堂讲授的基础上,可以将学生自学内容引申到用随机变量的分布律和分布函数来研究在实际考试中选择题得分情况演示,结合二项分布理论研究选择题对学习评价的情况。评价借助于Excel软件设计如下实验。假设某项考试由100道选择题组成,每道题1分,学生会做该题的概率为x(实际问题中相当于难度系数为1-x),当x=0的时候,被试者对考试内容完全不会,每题都随机选择,可以看成服从参数为(100,0.25)的二项分布,使用Excel中的BINOM-DIST()函数进行二项分布概率密度值和分布函数值的计算来演示考试结果。函数用法为:BINOM-DIST(k,n,p,FALSE/TRUE),其中k表示回答正确的题目数量,可以使用单元格自动生成,n,p为二项分布的参数。n表示总试验次数,p表示每次试验中事件出现的次数即答对题的概率。后面的参数FALSE/TRUE用来说明是计算概率密度函数和是计算分布函数。如BINOMDIST(A2,100,0.25,FALSE)表示对A2单元格中的自变量计算参数为(100,0.25)的二项分布概率密度函数值。使用Ex-cel的自动填充功能,便可方便生成该二项分布的概率密度表。为方便调节二项分布参数,可以将参数(n,p)用单元格的绝对引用代替,改变参数单元格的数值就能得到不同二项分布的概率密度表格。Excel还可以对概率密度表和分布函数表生成条形图和线图,若试题难度系数0.5,学生事实会做的题目应该有50道,因此会做的题目有50道,另外不会做的随机选择,正确率0.25,因此回答正确的题数为12.5,两者相加可知最终得62.5分的概率最大。

4结束语

第3篇

一是课时设置较少,而老师为了完成教学任务,不得不加快速度,知识点没办法讲细,势必会造成学生“贪多嚼不烂”;且课程内容较多,如果老师本身的知识结构沉淀不够,只是“照本宣科”,简单介绍概念、定义、理论和方法,缺少对实际的概率统计背景知识及发展现状的介绍,忽视对学生实践和应用能力的培养,导致所教知识、方法不能被学生接受、及时掌握。二是在应试教育的影响下,学生思维固定,缺乏学习的主动性。许多学生学习的目的是为了考试过关,对于考试涉及不到的课程知识,就只是简单了解或干脆不学,所以在整个学习过程中,不注重课程思想方法的领悟,只是忙于做题,把学习的目标仅仅定位于能看懂例题,会做课后习题,只关心具体解题的步骤,从而去模仿解题,而不是领会课程知识所呈现的方法。三是教师忽略与相关学科间的关系,只进行单一教材的课堂教学,没有适当穿插一些相关学科的知识,教学资源不能得到优化配置;教材比较陈旧,理论联系实际的应用实例较少,即使有一些联系实际的实例,也不涉及到当今科技信息,导致了学习与实践的脱节;教师在教学中解决实际问题的能力不够,理论与实际联系少之又少,即使有,表现的应用背景也被形式化的演绎一带而过,学生“雾里看花”,难以琢磨、难以理会,畏惧心理滋生。同时,教材中都是一些联系很紧凑的理论,以及简化了过程的证明和计算,学生感觉不到学习乐趣,意义就更谈不上了,这也是造成很多学生放弃对这门课程的学习,只背重点、记忆模仿解题应付考试的重要原因。

2问题的解决方案

2.1从整体内容上把握教材

根据《概率论与数理统计》教材,该课程整体上是讲述三个大的问题:一是概率论部分,介绍必要的理论基础;二是数理统计部分,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析的方法;三是随机过程部分,在讲清基本知识的基础上主要讨论了平稳随机过程,是随机变量的集合,能完全揭示概率的本质。课本上的很多问题都是围绕这三个问题来讲述的,因此,要打破“重理论,轻应用”“重概率,轻统计”的教学思想,且从整体上完整地对这三个问题进行讲授。由于概率论与数理统计的知识点多而零散,初学者对知识点不容易全面系统地把握,所以老师在教学中要经常引导学生进行简单复习回顾,从而使学生能够高效而快速地理解所学知识,系统掌握这有机结合的三部分内容。

2.2在讲授中要有其客观背景

很多学生虽然在中学接触过概率知识,但那只是皮毛,大学更注重的是思想的培养,而且本课程从内容到方法与其它数学课程都有本质的区别。因此,老师在讲解基本概念时,一定要把来龙去脉讲清楚。比如在评价棉花的质量时,“既需要注意纤维的平均长度,又需要注意纤维长度与平均长度的偏离程度,平均长度较大,偏离较小,质量较好”,这些常识性知识容易理解,学生也有兴趣听,然后就此引入概念———这是由随机变量的分布所确定的,能刻画随机变量某一方面的特征的常数统称为数字特征,它在理论和实际应用中都很重要。由此就很自然地引出了数字特征、数学期望、方差、相关系数和矩,这样学生就很好地理解了概念的实际背景。也就是说,在概念定理的教学中,首先应该在概念、定理产生的背景上下功夫,找出每个概念的实例,用大量事实来说明提出这些概念定理的客观依据是什么,它在实际应用中有什么意义。比如,一个随机变量由大量的相互独立的随机因素综合影响而形成,而且其中每一个个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似服从正态分布,那么这种现象正是中心极限定理的客观背景;再如,在介绍随机过程时,不妨从随机过程实例出发,如股票和汇率的波动、语音信号、视频信号、体温的变化等等。如果忽视了概念与定理产生的实际背景,离开实际去讲概念和定理,学生会觉得学习内容枯燥,而且也很难理解,更不会应用于解决实际问题,这样就降低了学习的积极性,也没有发挥该课程的功能。

2.3在教学过程中使用案例教学

案例教学的主角是学生,通过学生之间对概念、定义、定理、标注、例题积极主动的讨论,以达到更深入理解和掌握的目的。在教学中引入的案例,要能够激发学生的学习兴趣、学习积极性和参与讨论的主动性。如何选取案例,就要求教师在备课当中多花时间找资料、思考,在教学案例中尽可能选取社会热点、先进的科技信息为案例素材,尤其财经类院校应尽可能编写一些涉及财经信息方面的案例。比如,讲到随机变量内容部分,定要在金融经济学中编写涉及到的随机变量的案例;讲到中心极限定理部分,投资学中期权定价理论就是一个很好的案例;讲到参数估计和评价时,保险精算中对平均寿命函数的估计和评价则是很好的案例;随机过程部分,分数布朗运动投资组合的风险度量都是很好的案例等等。如此教学,才能激发学生的学习兴趣,在讨论中逐步体会基本概念、定义、定理的来龙去脉,实现了有效学习,培养了学生解决实际问题的能力和抽象概括、推理论证的能力。

2.4重视引导学生主动思考问题

培养创新思维“在教学过程中提出一些思考性和启发性都很强的问题,让学生分析、研究和讨论,引导学生去发现问题,分析问题,然后解决问题。”学生的学习要自觉要靠自己,不是由教师牵着走,而是由教师引导走,“授人与鱼,只供一日之炊;授人与渔,使人受益终身”,所以教师应多引导、鼓励学生主动思考问题。比如,教师在每次课结束前5分钟进行下堂课新知识的介绍时,对本堂课学的知识点和前面学过的知识做个串联,最好能随手画出知识点“网络状”图,引导学生积极思考,引出下次课要讲的内容,勾起学生的预习兴趣。再如,在讲课时,教师可以针对本节课的内容设计一系列“问题链”,用“问题链”带动和完成课堂教学,可很好地引导学生主动思考、创造性思维,引导学生思考、发现问题,讨论、做出结论,从而逐步地使教学由“灌输式教育”向“创新型教育”转变,教学互动,教学相长。同时,教师一定要想方设法改变“学生被动接受知识”为自主、有兴趣地去学习知识,引导和组织学生展开讨论,鼓励学生提出大胆的猜想,及时解决学生提出的问题,激发学生的求知欲,注重教学方法的灵活运用,鼓励学生动手探究和创新,这样教学效果才会明显。

3结语

第4篇

在教学内容的选编中,所选内容应突出“厚基础”“重应用”的应用型特色。综合考虑学生的就业方向,侧重论述概念、方法、原理的历史背景和现实背景在金融等方面的应用,对于冗长难懂的理论证明可以用直观易懂的现实背景来解释。例如讲解全概率公式时,学生虽可以比较容易地应用,但不容易理解公式的本质,所以并不觉得引入这些公式有什么必要性,大大降低了学生的学习兴趣。但如果在课堂引入“敏感事件调查”这个例子,会对经管类的文科学生具有很强的吸引力,从而为学生提高市场调查和问卷设计能力提供有益借鉴。在介绍贝叶斯公式时,可以根据经管类专业,引入贝叶斯公式应用在风险投资中的例子。在介绍期望的概念时,从赌博游戏介绍概念来源的背景,再将期望用到实际生活中去,可以引入其在投资组合及风险管理等方面的应用。这样能使学生真正理解概率论中许多理论是取之于生活而用之于生活,并能自觉将理论运用到生活中去。在介绍极大似然思想时,可以从学生和猎人一起打猎的案例进行引入。

2设计趣味案例,激发学生学习兴趣2015年1月5日

随着互联网的迅猛发展、电脑的普及、各种游戏软件的开发,很多大学生喜欢在网上玩游戏。教师可以抓住大学生爱玩游戏这一特点,况且概率论的起源就来源于赌博游戏,教师可以在讲授知识时,由一个游戏出发,循循诱导学生从兴趣中学到知识,再应用到生活中去。例如,在讲解期望定义时,可以设计这样的一个游戏案例:假设手中有两枚硬币,一枚是正常的硬币,一枚是包装好的双面相同的硬币(即要么都是正面,要么都是反面,在抛之后才可以拆开看属于哪种)。现在让学生拿着这两枚硬币共抛10次,一次只能抛一枚,抛到正面就可以获利1元钱,反面没有获利,问学生选择怎样一种抛掷组合,才能使预期收益最大?教师留给学生思考的时间,然后随机抽一位同学回答,并解释其理由。大部分学生选择先抛后面那枚硬币,如果发现两面都是正面,那么后面9次都抛这枚,如果是反面,那后面9次都抛前面那枚硬币。这种抛掷组合确实是最优的,但总是说不清其中的道理来。这时教师可以向学生解释,其实大家在潜意识中已经用到了期望,然后利用期望的定义为大家验算不同抛掷组合的期望值来说明大家选的组合确实是最优的,这时学生豁然开朗,理解了期望的真正含义。游戏可以继续,如果将若干个包装好的非正常硬币装入一个盒子里,比如将5枚双面都是反面的、1枚双面都是正面的硬币装入盒子里,学生从中摸一个硬币出来,再和原来那枚正常的硬币一起共抛10次,也可以选择不摸硬币,直接用手中正常硬币抛10次。这个时候,原来那种抛掷组合还是最优的吗;如果再改变箱子中两种硬币的比例,比如9枚双面是反的,1枚双面都是正的,结果又是怎样等等,这些问题可以留给学生课后思考,并作为案例分析测试题。按照上述设计教学案例,不仅让学生轻松学到知识,激发学生学习的能动性,还可以提高学生自己动手解决实际问题的能力,培养学生的创新能力。

3精选实用型案例,引导学生学以致用

如在讲解全概率公式时引入摸彩模型,中奖的概率是否与抽奖的先后顺序有关。利用全概率公式可以证明与顺序无关,大家机会是平等的。又如讲解事件独立性可以引入比赛局数制定的案例,如果你是强势的一方,是采取三局两胜制还是五局三胜制,这个例子也可以用大数定理来解释,n越大,越能反映真实的水平。又如设计车门高度问题,公共汽车车门的高度是按成年男性与车门顶头碰头机会在0.01以下来设计的:设某地区成年男性身高(单位:cm)X~N(170,36),问车门高度应如何确定?这个用正态分布标准化查表可解决。合理配备维修工人问题:为了保证设备正常工作,需配备适量的维修工人(工人配备多了就浪费,配备少了又要影响生产),现有同类型设备300台,各台工作是相互独立的,发生故障的概率都是0.01。在通常情况下一台设备的故障可由一个人来处理(我们也只考虑这种情况),问至少需配备多少工人,才能保证设备发生故障不能及时维修的概率小于0.01?这样的问题在企业和公司经常会出现,我们用泊松定理或中心极限定理就可以求出。学生参与到实际问题中去,解决了问题又学到了知识,从而有成就感,学习就有了主动性。

4运用多媒体及统计软件进行经典案例分析

在概率统计教学中,实际题目信息及文字很多,需要利用统计软件及现代化媒体技术。其一,采用多媒体教学手段进行辅助教学,可以使教师节省大量的文字板书,避免很多不必要的重复性劳动中,从而教师就可以将更多的精力和时间用于阐释问题解决的思路,提高课堂效率和学生学习的实际效果,有效地进行课堂交流。其二,使用图形动画和模拟实验作为辅助教学手段,可以让学生更直观地理解一些抽象的概念和公式。如采用多媒体教学手段介绍投币试验、高尔顿板钉实验时,可以使用小动画,在不占用过多课堂教学时间的同时,又能增添课堂的趣味性。而在分析与讲解泊松定理时,利用软件演示二项分布逼近泊松分布,既形象又生动。如果在课堂教学中使用Mathematica软件演示大数定律和中心极限定理时,就可将复杂而抽象的定理转化为学生对形象的直观认识,以使教学效果显著提高。在处理概率统计问题过程中,我们经常会面对大量的数据需要处理,可以利用Excel,SPSS,Matlab,SAS等软件简化计算过程,从而降低理论难度。不仅如此,在教师使用与演示软件的过程中,学生了解到应用计算机软件能够将所学概率论与数理统计知识用于解决实际问题,从而强烈激发学生学习概率知识的兴趣。

5结合实验教学,培养学生应用技能

第5篇

关键词:概率论;教学;思维方法

在数学的历史发展过程中出现了3次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.

1将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“阳春白雪”,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18世纪,为解决天文观测误差而提出的.在17、18世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“拟合”误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A.Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ代数[3]

这一概念:设Ω为样本空间,若Ω的一些子集所组成的集合?满足下列条件:(1)Ω∈?;(2)若A∈?,则A∈?;(3)若∈nA?,n=1,2,??,则∈∞=nnA∪1?,则我们称?为Ω的一个σ代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ代数.几何概型是19世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899年,法国学者贝特朗提出了所谓“贝特朗悖论”[3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1的圆,随机取它的一条弦,问:

弦长不小于3的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3种答案针对的是3种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“随机”、“等可能”、“均匀分布”等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ-代数的概念:对同一个样本空间Ω,?1={?,Ω}为它的一个σ代数;设A为Ω的一子集,则?2={?,A,A,Ω}也为Ω的一个σ代数;设B为Ω中不同于A的另一子集,则?3={?,A,B,A,B,AB,AB,BA,AB,Ω}也为Ω的一个σ代数;Ω的所有子集所组成的集合同样能构成Ω的一个σ代数.当我们考虑?2时,就只把元素?2的元素?,A,A,Ω当作事件,而B或AB就不在考虑范围之内.由此σ代数的定义就较易理解了.2广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“玛丽莲问题”:十多年前,美国的“玛利亚幸运抢答”

电台公布了这样一道题:在三扇门的背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?

由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].

概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“必然寓于偶然之中”的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε,0<ε<1,不管ε如何小,如果把这试验不断独立重复做任意多次,那么A迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε)n,前n次A都不出现的概率为1?(1?ε)n,当n趋于无穷大时,此概率趋于1,这表示A迟早出现1次的概率为1.出现A以后,把下次试验当作第一次,重复上述推理,可见A必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3积极开展随机试验随机试验是指具有下面3个特点的试验:

(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A)>0时,P(B|A)未必等于P(B).但是一旦P(B|A)=P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B)>0时,若P(A|B)=P(A),就称事件B的发生不影响事件A的发生.因此若P(A)>0,P(B)>0,且P(B|A)=P(B)与P(A|B)=P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:

定义1:设A,B是两个随机事件,若P(A)>0,P(B)>0,我们有P(B|A)=P(B)且P(A|B)=P(A),则称事件A与事件B相互独立.接下来,我们可以继续引导学生仔细考察定义1中的条件P(A)>0与P(B)>0是否为本质要求?事实上,如果P(A)>0,P(B)>0,我们可以得到:

P(B|A)=P(B)?P(AB)=P(A)P(B)?P(A|B)=P(A).但是当P(A)=0,P(B)=0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB?A,AB?B,因此P(AB)=0=P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A)>0,P(B)>0,即如下定义事件的独立性:

定义2:设A,B为两随机事件,如果等式P(AB)=P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B相互独立.很显然,定义2比定义1更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5结束语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.

[参考文献]

[1]C·R·劳.统计与真理[M].北京:科学出版社,2004.

[2]朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.

[3]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.

[4]张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.

第6篇

关键词:概率论;教学;思维方法

在数学的历史发展过程中出现了3次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“阳春白雪”,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18世纪,为解决天文观测误差而提出的.在17、18世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“拟合”误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A.Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ代数[3]

这一概念:设Ω为样本空间,若Ω的一些子集所组成的集合?满足下列条件:(1)Ω∈?;(2)若A∈?,则A∈?;(3)若∈nA?,n=1,2,??,则∈∞=nnA∪1?,则我们称?为Ω的一个σ代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ代数.几何概型是19世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899年,法国学者贝特朗提出了所谓“贝特朗悖论”[3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1的圆,随机取它的一条弦,问:

弦长不小于3的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3种答案针对的是3种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“随机”、“等可能”、“均匀分布”等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ-代数的概念:对同一个样本空间Ω,?1={?,Ω}为它的一个σ代数;设A为Ω的一子集,则?2={?,A,A,Ω}也为Ω的一个σ代数;设B为Ω中不同于A的另一子集,则?3={?,A,B,A,B,AB,AB,BA,AB,Ω}也为Ω的一个σ代数;Ω的所有子集所组成的集合同样能构成Ω的一个σ代数.当我们考虑?2时,就只把元素?2的元素?,A,A,Ω当作事件,而B或AB就不在考虑范围之内.由此σ代数的定义就较易理解了.2广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“玛丽莲问题”:十多年前,美国的“玛利亚幸运抢答”

电台公布了这样一道题:在三扇门的背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?

由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“必然寓于偶然之中”的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε,0<ε<1,不管ε如何小,如果把这试验不断独立重复做任意多次,那么A迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε)n,前n次A都不出现的概率为1?(1?ε)n,当n趋于无穷大时,此概率趋于1,这表示A迟早出现1次的概率为1.出现A以后,把下次试验当作第一次,重复上述推理,可见A必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3积极开展随机试验随机试验是指具有下面3个特点的试验:

(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A)>0时,P(B|A)未必等于P(B).但是一旦P(B|A)=P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B)>0时,若P(A|B)=P(A),就称事件B的发生不影响事件A的发生.因此若P(A)>0,P(B)>0,且P(B|A)=P(B)与P(A|B)=P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:

定义1:设A,B是两个随机事件,若P(A)>0,P(B)>0,我们有P(B|A)=P(B)且P(A|B)=P(A),则称事件A与事件B相互独立.接下来,我们可以继续引导学生仔细考察定义1中的条件P(A)>0与P(B)>0是否为本质要求?事实上,如果P(A)>0,P(B)>0,我们可以得到:

P(B|A)=P(B)?P(AB)=P(A)P(B)?P(A|B)=P(A).但是当P(A)=0,P(B)=0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB?A,AB?B,因此P(AB)=0=P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A)>0,P(B)>0,即如下定义事件的独立性:

定义2:设A,B为两随机事件,如果等式P(AB)=P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B相互独立.很显然,定义2比定义1更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5结束语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.

总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法.通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.

[参考文献]

[1]C·R·劳.统计与真理[M].北京:科学出版社,2004.

[2]朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.

[3]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.

[4]张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.

第7篇

《概率论与数理统计》是一门注重理论的数学课程,在教学中让学生掌握基本理论是必要的,但在教学过程中也不能仅仅以此作为目标。那么,一方面,在教学中我们就要做到有取有舍,基本的定理和公式要讲清楚,而对于这些定理和公式的证明可以对学生降低要求,通过多举例子,多给实际案例,让学生学会使用这些公式和定理;另一方面,将一部分学时单独列为实践学时,目前数学软件在统计领域的使用非常广泛,比如常见的:Mtlab、SAS、SPSS等,在教学中将理论与相关数学软件相结合,进行上机教学。让学生通过实践认识到本门学科在实际中如何应用,也让学生能够掌握一到两门数学软件的使用,方便他们今后专业学习。

二、结合专业,注重案例教学

在地质类专业中,很多实际问题都直接用到了《概率论与数理统计》中的内容,比如:区间估计、假设检验、参数估计等,都是在地质类专业教学中常用的数理统计方法。那么,我们在《概率论与数理统计》的课堂教学中就可以有的放矢地将地质类学科中的案例与数理统计中的这些方法相结合,把地质学中的实际问题当作例子在《概率论与数理统计》课堂中进行讲解,地质类专业的案例在很多时候就是在具备专业背景下的统计学的应用,用这类问题来替换课本上枯燥的数学例子,一方面可以增强课堂的趣味性,提高学生的学习兴趣和积极性,另一方面也为将来学生在专业课中使用概率论与数理统计知识打下基础,帮助学生顺利地完成从基础课到专业课的自然过渡。

三、将数学建模的思想融入日常教学中