时间:2022-09-27 16:29:24
序论:在您撰写工业废水处理时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:焦炭吸附含油废水处理
1试验用水及试验装置
试验用废水样品采自某油田采油厂预处理后的采油废水,石油烃类含量为10.35mg/l。为防止在处理过程中因废水中石油烃类物的破乳析出而改变其在废水中的含量,故加入了适量乳化剂。
筛选粒径为2~8mm的粒状焦炭,在0.1mol/l的稀盐酸中浸泡一昼夜后水洗,再用0.1mol/lnaoh浸泡一昼夜后水洗至中性晾干,装填于高0.8m、直径3cm的三根玻璃管中,焦炭层厚分别为:h1=0.5m,h2=0.3m,h3=0.7m,焦炭层两端分别用玻璃纤维封垫。
试验装置见图1。试验过程中,控制出水的石油烃含量≯1.0mg/l。
2试验结果
共进行了三个空床线速度和三种焦炭层厚度的试验,取得九组数据,试验结果列于表1。
将试验数据进行回归分析,可以得到不同空床线速度条件下炭床累积工作时间(t)与焦炭层厚度(h)的直线回归方程:
v=4.58m/h时,t=2131h-557
v=6.21m/h时,t=1471h-417
v=9.28m/h时,t=894h-310
3讨论
①饱和吸附量n0是焦炭的特性,从表2数据看,随着空床线速度(v)的提高,n0呈下降趋势。
②由表2可见,吸附速率常数k随着空床线速度的增大而显著提高。因为流速增大,使得焦炭表面上的水膜更新加剧,有利于吸附过程的进行。
③焦炭床的临界高度(h0)随着空床线速度(v)的增加有比较明显的提高。因为空床线速度的提高减少了废水停留时间,尽管吸附速率常数k也随空床线速度提高而增大,但k仅与v的0.8283次方呈正比。因此,在保证出水石油烃浓度符合处理要求的情况下,增大废水的空床线速度,焦炭床的临界高度必有所增加。
④对于工业生产装置而言,为了使所处理的废水在整个床层截面上的流速分布均匀,通常床层高度至少等于床面直径。因此一般情况下,床层高度远大于临界高度h0,空床线速度对临界高度的影响在设计中可不作为主要设计参数考虑。
4设计实例
在某含油废水处理工艺设计中,采油废水经粗粒化、混凝沉降除油等工序后,废水中含油浓度可从10mg/l以上降至2~3mg/l。为达到含油浓度降至1.0mg/l以下的深度处理要求,增加并设计了焦炭吸附床处理工序,具体设计参数如下:
进水石油烃含量:c0≤5mg/l
出水石油烃含量:ce≤1.0mg/l
处理水量:q=100m3/d
每日处理时间:t=8h
选取空床线速度:v=11m/h。
计算焦炭床层直径:d=1000.758×11×8=1.203m,取1200mm
焦炭层高度:取床直径的1.5倍,h=1.5d=1.8m
根据表2计算数据得到的n0~v,k~v幂函数拟合关系,两条曲线可查得,当空床线速度为11m/h时,有:
n0=82.6kg/m3
k=0.808m3/(kg·h)
此时的临界高度为:
h0=(v/kn0)ln(c0/ce-1)=11/(0.808×82.6)ln(5/1-1)=0.228m
焦炭柱可工作时间为:
t=(n0·h)/(c0·v)-1/(c0·k)ln(c0/ce-1)=82.6×1.8/5.0×10-3×11.0-1/(5.0×10-3×0.808)·ln(5-1)=2360h
每年更换次数:
365×8/2360=1.24次
焦炭床利用率为:
(h-h0)/h×100%=1.8-0.228/1.8×100%≈87%
5结论
【关键词】环境污染 工业废水 处理原则及方法
工业废水是水环境污染的主要来源,环境保护是我国的一项基本国情。20世纪50年代,我国的工农业开始发展,水污染程度低,国家提倡采用废水混合灌溉的方式来处理废水;60、70年代,随着工农业的迅速发展,水污染程度升高,污染成分增多,国家开始设置环保组织机构,建立废水处理厂;20世纪末期,由于国家大量人力和财力的投入,我国的废水处理技术得到了显著提高,一些技术达到了国际领先水平,并引进了国外废水处理的新技术、新工艺、新设备;近些年来,随着国家政策全力支持,全国大力新建废水厂和改造工艺落后的废水厂,大大提高了废水处理数量和质量以及废水处理后的二次利用比例。建立大型废水处理厂和废水处理的全过程需要巨大的费用,要想把工业废水处理好,尽可能降低对环境的污染,我们就必须有一套科学完整的废水处理工艺和先进的废水处理设备。
1 工业废水特点和分类
与城市生活废水相比,工业废水的主要特点包括:
(1)种类多,防治途径复杂多样,废水处理后可以单独排放,或与城市废水一起处理,或是经过预处理后进入污水处理厂;
(2)污染物成分多,处理难度大,费用高,需要多种处理技术;
(3)有的污染物含量高,如果直接排放,会对环境造成很大影响;
(4)排放数量大,约占整个废水的70%左右;
(5)处理工艺复杂,往往需要多种化学、物理、生物代谢等工艺;
(6)具有明显的酸碱度;
(7)有的废水温度高,容易造成环境的热污染;
(8)常常含有易燃易爆有毒物质。
为了划分工业废水的类别,了解各种工业废水的性质和危害性,并制定出相应的废水处理方法,工业废水主要按下面方法分类:
(1)按废水中所含主要污染物的化学性质分为无机废水和有机废水。例如电解废水、电镀水、硝酸废水及合成氨废水是无机废水;食品、皮革及造纸加工过程产生的废水,是有机废水。
(2)按企业的产品和加工对象分类,如皮革制衣废水、催化重整废水、炼焦煤气废水、金属酸洗废水、纺织印染废水、医药农药废水等。
(3)按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含金属废水、含油废水、含有机磷废水和放射性废水等。
第(1)、第(2)种分类法没有指出废水中所含污染物的主要成分和危害;第(3)种分类法,明确地指出废水中主要污染物的成分,并能表明废水具有一定的危害性。此外,也可以按处理难度、危害性大小将废水分为:
(1)废热,主要是指设备和装置的冷却水,冷却水可以循环利用;
(2)一般污染物,无毒、易于生物代谢降解;
(3)有毒害污染物,有毒性而又不易生物降解的物质,主要是指重金属、有毒化合物等。
在实际生产活动中,单一的工业生产可以排出多种不同性质的废水,而一种废水可能含有多种污染物并且污染物的浓度不同。例如:皮革、纺织工厂既排出酸性废水,又排出碱性废水。具体的一套生产设备或装置排出的废水,也可能同时含有几种污染物,如石油化工厂的蒸馏、重整、裂化、催化等装置的塔顶油品蒸气凝结水中,常常含有酚类、油类、硫化物等。不同的工业企业,即使原料、产品和生产工艺不同,也可能排出性质相同或相似的废水,如石油化工厂和农药化肥厂的废水,可能均有含油类、酚类物质。
2 废水处理的原则和方法
由于工业废水量大,成分复杂,处理难,不易降解和净化,对环境的影响大,所以在进行工业生产同时要考虑如何控制废水的产生,加强工业废水的科学管理,处理废水应该遵循一些基本原则:
(1)首选无毒生产工艺,改革淘汰落后工艺,从源头尽可能杜绝或减少有毒有害废水排放;
(2)生产原料、中间产物、产品、副产品涉及有毒有害物质时,要加强监管,提高操作人员技能,避免有毒有害物质流失;
(3)废水分类回收,特别是含有剧毒、重金属、放射性成分的废水要与其他废水分流,便于处理和回收其他有用物质;
(4)排放量大而污染较轻的废水,经过处理后可以循环使用,但不宜直接排入下水道;
(5)生物可以降解代谢的有毒废水,如含有酚、硫酸盐废水,要经处理达到国家废水排放标准后,再做进一步生化处理;
(6)一些生物不能降解代谢的有毒有害废水,应单独处理,禁止排入城市下水道;
(7)类似生活废水的有机废水,如食品、造纸等废水,可以直接排入城市污水管道。
19世纪末期,国外就开始了对废水处理的研究,做了大量的试验并用于生产实践。工业废水处理方法主要包括:物理法、化学法和生物法。
物理处理法是在不改变废水的化学性质的前提下利用过滤、分离等物理方法去除废水中不溶解的悬浮状颗粒污染物质,是对废水的预处理,也是废水处理的第一阶段。格栅和筛网工艺是用金属栅条制成一定间隔的框架结构,放置于废水渠里,主要用来去除悬浮颗粒物,保护后面的废水处理设备不堵塞;沉淀工艺是指利用污染物自身的重力,使废水中比水重的物质下沉,达到与水分离的效果,沉淀的类型分为:自由沉淀、絮凝沉淀、区域沉淀和压缩沉淀;气浮工艺是在废水中通入空气,产生气泡并附着在细小污染物上,形成比水轻的浮体,使之浮在水面上,用来分离密度接近或者比水小的细微颗粒;离心分离工艺是借助离心设备产生离心力,使不同质量的悬浮物、水体分离。
化学处理法主要是向废水中加入化学物质,与废水反应,产生无害物,例如:酸碱中和法用来平衡废水中的酸碱度;萃取法是根据可溶物(溶质)在两种互不相溶的溶剂里溶解度不同,把溶质从一种溶剂中提出到另一种溶剂中;氧化还原法可以出去废水中还原性或氧化性污染物。
生物法是利用微生物降解代谢有机物为无机物来处理废水。自然界中,微生物种类繁多、数量巨大、分布范围广、繁殖力强,具有氧化分解有机物的能力等特性。因此,被广泛应用于处理生活废水以及炼油化工、印染纺织、制革造纸、食品制药等多种工业废水。根据微生物代谢过程中对氧的要求,废水的生物处理主要可分为好氧处理和厌氧处理两大类,常用生物过滤、活性污泥、藻类的光合作用等工艺。
上述废水处理原则和方法各有其适应范围和优缺点,某一种废水究竟优选哪种方法处理,必须经过详细调研和科学试验,根据废水性质和特点、水排放时对水的要求、废物回收的经济价值等来选择,同时还要考虑废水处理过程中产生的污泥、残渣以及二次污染,取长补短,相互补充,往往需要使用多种方法才能达到良好的处理效果。
3 结语
水资源缺乏是全球性问题,经过处理后的废水可以二次利用,随着科技的进步,废水处理技术越来越完善,废水二次利用的数量和领域日益扩大。目前我国工业废水处理还处于大力发展阶段,所面临的环境污染压力大,并且随着国民经济提高和城市化建设日益加快,工业废水排放量会持续增长。环境科学的出现和发展,促进了废水处理技术的发展,采用新技术、新工艺和新设备,对废水进行安全有效环保经济处理,引起了世界各国人民和政府部门的极大关注。
参考文献
[1] 邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003
[2] 金兆丰,余志荣. 污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003
[3] 黄霞. 水处理工程[M].北京:清华大学出版社,1985
[4] 田波文.工业废水污染的检测与控制[J].广西轻工业,2009,(7)
关键环节一:根据制革废水的上述水质,可以看出,其悬浮物浓度相当高。主要是动物皮屑、毛、泥砂等。首先,其处理采用以生化为主,并辅以物化处理是正确的,因其生化性较好,B/C=0.4~0.5,宜采用生化处理作为制革废水的主处理工艺。此处的物化处理是指在生化处理之前的预处理,这一点对制革工业废水处理至关重要。在无极县部分制革工业企业中,其皮革工业废水治理初始阶段,工艺设计中,忽略了预处理环节,导致运行失败。由于在生化处理单元前没有设足够停留时间的沉淀池或气浮池,使原水中的高悬浮物随同原水一并进入生化处理单元,从而严重地影响了生化处理效果。
当废水中含有较高的悬浮物时,悬浮物会隔离微生物与废水中有机污染物的接触,从而影响微生物对水中BOD的吸附和降解,进一步造成生化处理效率下降。因此,制革工业废水(包括皮革、裘皮、羊绒加工等废水)的处理,必须强化生化处理单元之前的物化预处理,这是很重要的一个处理环节。关键环节二:如前所述,皮革工业废水含盐量较高,特别是Ca2+浓度,这是皮革废水另一个特点。
皮革废水的生化处理单元是采用活性污泥法还是采用生物膜法,这也是一个关键环节,在这里存在一个误区。活性污泥法常应用于市政污水处理,而生物膜法则常应用于工业废水处理,特别是生物接触氧化法。生物接触氧化处理工艺具有如下优点:(1)使水力停留时间HRT与污泥停留时间SRT完全分离,虽其水力停留时间HRT相对较短,生活污水HRT约2h~4h,但污泥停留时间SRT却很长,可以达到30d,甚至更长至60d。(2)BOD(或COD)容积负荷率比活性污泥法高得多,因此生物接触氧化法单位容积的生物量比活性污泥法大得多。一般活性污泥法VSS为3.0kg/m3~3.5kg/m3,而生物接触氧化法VSS为7kg/m3~12kg/m3,因此,其负荷率为活性污泥法的2~3倍,相应其容积占地面积生物接触氧化法要比活性污泥法小得多。(3)生物接触氧化法既适合低浓度有机废水处理也适合高浓度有机废水处理,而活性污泥法,对低浓度有机废水处理效果甚微。实践证明,当废水COD及BOD浓度较低时,COD<100mg/L,BOD<50mg/L时,微生物会因食料不足,而形不成菌胶团,只能成单体状态存在于水中。基于上述优点,生物接触氧化法在工业废水处理中得到了广泛的应用,如印染废水、焦化废水、食品废水、淀粉废水、啤酒废水等。根据上述生物接触氧化法的优点,制革工业废水采用生物接触氧化法是顺理成章的事,但运行实践证明这是一个误区。
由于皮革废水中含盐量较高,其中Ca2+含量也很高,如采用填料式生物接触氧化法,会使填料上逐渐结成矿化物垢,而且逐渐增厚,此种矿物垢对生物膜起到抑制作用。而这种矿物垢人工无法清除,从而使废水处理效果愈来愈差,甚至填料上的生物膜完全脱落。近期的两例革园区污水处理,由于上述原因而导致运行失败。综上所述,皮革废水的生化处理,应采用活性污泥法,切忌采用填料式生物膜法。
二、结论
1.制革工业废水应强化预处理,用混凝沉淀或混凝气浮法将悬浮物予以去除,以免影响生化处理效率。
关键词:低色度;工业废水;水处理剂
中图分类号:X832 文献标识码:A 文章编号:1006-8937(2013)03-0175-02
工业废水的排放量大,排出废水约占用水量70%~90%。在废水中由于含有大量的有色的有机物,因此有些废水色度较高。色度又是公众容易产生意见的感官指标之一,且去除较难。而对于已经过初步处理的工业废水,其色度明显下降后,想再对其深度处理(达到一级水质排放标准),如果用一般的方法很难处理,而臭氧等方法处理费用较高。目前处理途径有二种:一是对现有处理方法技术改进,二是研制新型水处理剂。通过对国内外文献资料以及相关技术专利的查阅,我们发现工业低色度废水的深化处理目前还是一个空白,因此,低色度工业废水的脱色研究具有非常重要的意义。
1 现有工业废水脱色处理方法
现有工业废水脱色处理方法主要有吸附法、絮凝法、氧化法、电化学方法、生化法等。
①吸附法。吸附法根据吸附剂的不同又分为活性炭、离子交换纤维、各种天然矿物(膨润土、硅藻土) 、工业废料(煤渣、粉煤灰)及天然废料(木炭、锯屑)等吸附处理法。人们常采用改性膨润土处理染色废水。
②絮凝法。絮凝机理是在悬浮液中加入絮凝剂,胶体粒子表面电荷减少,则粒子间的斥力就减弱,粒子相互碰撞时,会结合形成凝絮。常用絮凝剂主要有:无机絮凝剂、有机高分子絮凝剂、微生物絮凝剂。
③氧化法。氧化法分为化学氧化、光催化氧化、超声波氧化。化学氧化脱色最常用。
④电化学方法。电化学法是废水处理中的电解质在直流电的作用下发生电化学反应的过程。电化学处理印染废水是一种较为简单,经济有效的方法,具有广泛的发展前途。Danilinc用电絮凝法处理色度为8万倍的印染废水时脱色率达80%,且该法可提高废水的可生化性;赵永才等用微电法在强酸性条件下,对含蒽醌类和多偶氮类染料的混合废水脱色率为82%。利用活性炭作电极,借助其吸附性能富集染料分子,在外电场的作用下氧化发色基团,脱色率可达98%以上,COD去除率达80%以上。
⑤生化法。生物法脱色是利用微生物来氧化或还原染料分子,破坏其不饱和键和发色基团,可采用好氧法和厌氧法。如肖羽堂采用缺氧— 二级好氧(A/O2)工艺处理后,出水色度去除率达90%;用UASB和管道厌氧消化器直接处理高浓度染料废水的中长期运行结果表明,废水中的色度去除率可稳定在90%以上。
2 实验方案
选用细炭粉对膨润性,筛选絮凝剂与催化剂,再将三者分别置于马弗炉中焙烧,即得到固体工业水处理剂。并以此产品对模拟低色度废水脱色率进行评价。
3 絮凝剂的选择
3.1 实验方案
选择100∶15的膨润土和细炭粉在550℃下对膨润性,然后根据100∶10的改性膨润土和三氧化二铝(硫酸亚铁)的质量比,将三氧化二铝(硫酸亚铁)配制成适量的水溶液,和改性膨润土混合,调节pH10左右,450 ℃下焙烧2 h。再根据100∶0.5的改性膨润土和银的质量比称取硝酸银,并将硝酸银配制成适量的溶液,和上述焙烧物充分混和后在450 ℃下焙烧2 h,得到两种固体水处理剂。根据两者对0.01 g/L(色度为95倍)甲基橙的脱色率来确定絮凝剂。
3.2 实验数据和结论
以三氧化二铝作为絮凝剂的水处理剂处理甲基橙溶液,溶液色度为70倍,脱色效率为26.3%,而以硫酸亚铁作为絮凝剂的水处理剂处理甲基橙溶液后,溶液色度为35倍,脱色效率为63.2%。
由表1可见,以絮凝剂硫酸亚铁制备的水处理剂处理效果明显优于以三氧化二铝作为絮凝剂制得的水处理剂。同时,由于铝对人体有相当大的危害。故本实验选择硫酸亚铁作为水处理剂中的絮凝剂。
4 水处理剂的处理效果实验
为了能准确反映采用该配方和该操作条件(膨润土和细炭粉的质量比为100∶15;改性时温度为450 ℃,焙烧2 h;改性膨润土和硫酸亚铁的质量比为100∶20,添加絮凝剂后450 ℃焙烧2 h;改性膨润土和银的质量比为100∶0.5,添加催化剂后450 ℃焙烧2 h)制备的水处理剂对低色度工业废水的脱色效果,本实验同时配制两种模拟废水:直接湖兰废水、结晶紫废水、直接深兰废水、直接翠兰废水和直接士红废水。
4.1 直接士红废水处理
当直接士红的浓度为0.01 g/L时,色度为110倍。用做好标记的7张称量纸分别称取2.5 078 g、2.0 096 g、1.6 054 g、1.3 045 g、1.0 048 g、0.7 070 g和0.4 046 g,分别对应加入到置有100 mL浓度为0.01 g/L直接士红的烧杯中,将烧杯放在电磁搅拌器上搅拌(低速)20 min后,静置30 min,然后用离心沉淀器4 000 r/min离心10 min,取上层清液,用紫外可见分光光度计测定吸光度。结果见表2。
从表2可以看出,当投加量在1.3 g左右时,处理过的废水色度为2倍,处理效率最高。
4.2 直接翠兰废水处理
当直接翠兰浓度为0.04 g/L时,色度为85倍。用做好标记的7张称量纸分别称取2.4 378 g、1.9 945 g、1.5 306 g、1.0 281 g、0.7 094 g、0.5 161 g和0.3 238 g,分别对应加入到置有100 mL浓度为0.04 g/L直接翠兰的烧杯中,将烧杯放在电磁搅拌器上搅拌(低速)20 min后,静置30 min,然后用离心沉淀器4 000 r/min离心10 min,取上层清液,用紫外可见分光光度计测定吸光度。结果见表3。
由表3可知,当水处理剂的投加量在0.5 g左右时,处理效果最佳。
5 实验结论
①絮凝剂加入量太少,絮凝不完全致使出水不够清澈,影响脱色效果。
②水处理剂的用量需适中,加入量过多不利于处理效果。
③低色度工业废水经过本实验水处理剂制得的水处理剂处理后色度达到《污水综合排放标准》的一级标准。
参考文献:
[1] 闻瑞梅,邓守权.用紫外光和双氧水降低工业废水色度的研[J].电子学报,2005,(8).
[2] 童旭卿,王国庆.印染废水的脱色方法[J].广东化工,2004,(2).
[3] 张大鹏,徐亚同.废水处理[J].上海化工,1999,(2).
[4] 魏光涛,李仲民.改性膨润土吸附脱色糖蜜酒精废液的研究[J].高校化学工程学报,2004,(4).
[5] 朱洪涛.改性粉煤灰对活性艳兰染料吸附性能的研究[J].环境污染治理技术与设备,2005,(3).
[6] Ryuichiro K.Microbial flocculation of waste liquids and oil emulsion by a bioflocculant fromAlcaligenes latus[J]. Agri Biol Chem,1991,(4).
[7] Daniliuc L.Performance and Economic Aspects of the Dffluents by Electro - Floccuation Using the Dequaflox[J].Tribune del’Ean,1995,(48).
[8] 慕峰,庄惠生.染料酸性蓝水溶液光催化氧化脱色研究[J].工业用水与废水,2004,(4).
[9] 肖羽堂,许建华,陈伟,等.难生化降解的某丝绒染料废水处理新工艺(A /O2)工程应用研究[J].工业水处理,1999,(3).
[10] 郝鲁江,包振民,于同立.脱色优势菌DRBD-6的初步研究[J].山东轻工业学院学报,2006,(3).
关键词氨氮废水 处理 技术
中图分类号:[F287.2] 文献标识码:A 文章编号:
工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。由此而产生的氨氮废水也成为行业发展制约因素之一;过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。近年来我国海域不断发生赤潮,氨氮是污染的重要原因之一。因此,经济有效的控制氨氮废水污染也成为当前环保工作者研究的重要课题,也是企业迫切需要解决的难题。废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前采用的除氮工艺有生物硝化与反硝化、沸石选择换吸附、空气吹脱及折点氯化等四种。本文对各种氨氮废水处理方法的优缺点进行分析汇总。
1生物硝化与反硝化(生物除氮法)
1.1生物硝化
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值 当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度 温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间 硝化菌的增殖速度很小,其最大比生长速率为 =0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间 必须大于硝化菌的最小世代时间 。在实际运行中,一般应取 >2 ,或 >2 ;(4)溶解氧 氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷 硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
1.2生物反硝化
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:
6NO3-十2CH3OH6NO2-十2CO2十4H2O
Y _ Q b Y4w ~06NO2-十3CH3OH3N2十3CO2十3H2O十60H-
水网博客 g8x I Q,E8^ p由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可使有机物氧化分解。
影响反硝化的主要因素:(1)温度 温度对反硝化的影响比对其它废水生物处理过程要大些。一般以维持20~40℃为宜。若在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值 反硝化过程的pH值控制在7.0~8.0;(3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源 当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
生物处理法中,一般采用的A/O法、A2/O法、SBR序批处理法等对脱氮具有一定效果的工艺技术,一般处理的废水氨氮含量不能超过300mg/L,同时,为了实现脱氮的目的,必须补充相应的碳源来配合实现氨氮的脱除,使运行费用有很大的增加,氨氮废水来源多,排放量大,采用经济有效的技术实现处理要求迫在眉睫。
近年来,随着生物工程技术的发展,特别是定向分离和培育的特性微生物工程技术的飞速进步,使传统脱氮理论受到挑战,并在实际氨氮废水的处理项目中被打破。生物脱氮理论上有了很多进展,新的脱氮理论在实践上得到了很好的验证,如: ①亚硝酸硝化/反硝化工艺。该工艺可以节省25%硝化曝气量,节省40%的反硝化碳源,节省50%反硝化反应器容积。 ②同时硝化/反硝化工艺(SND)。好氧环境和缺氧环境同时存在的一个反应器中,由于许多新的氮生物化学菌族被鉴定出来,在菌胶团作用下,硝化/反硝化同时进行,从而实现了低碳源条件下的高效脱氮。 ③好氧反硝化 在好氧条件下,某些好氧反硝化菌能够通过氨氮的生物作用形成氧化氮和氧化亚氮等气态产物。 ④厌氧氨氧化 一些微生物能够以硝酸盐、二氧化碳和氧气为氧化剂将氨氧化为氮气。
2沸石选择换吸附
沸石是一种硅铝酸盐,其化学组成可表示为:
(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9)
式中M2+代表Ca2+、Sr2+等二价阳离子,M+代表Na+、K+等一价阳离子,为一种弱酸型阳离子交换剂。在沸石的三维空间结构中,具有规则的孔道结构和空穴,使其具有筛分效应,交换吸附选择性、热稳定性及形稳定性等优良性能。天然沸石的种类很多,用于去除氨氮的主要为斜发沸石。
斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。交换吸附饱和的拂石经再生可重复利用。溶液pH值对沸石除氨影响很大。当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。通常,进水pH值以6~8为灾。当处理合氨氮10~20mg/L的城市严水时,出水浓度可达lmg/L以下。穿透时通水容积约100~150床容。沸石的工作交换容量约0.4×10-3n-1mol/g左右。吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。再生液用量约为处理水量的3~5%。研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。针对石灰再生的结垢问题,亦有采用2%的氯化钠溶液作再生液的,此时再生液用量较大。再生时排出的高浓度合氨废液必须进行处理,其处理方法有:(1)空气吹脱 吹脱的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸气吹脱 冷凝液为1%的氨溶液,可用作肥料;(3)电解氧化(电氯化) 将氨氧化分解为N2。
3空气吹脱 在碱性条件下(pH>10.5),废水中的氨氮主要以NH3的形式存在。让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。影响氨吹脱效果的主要因素有:(1)pH值 一般将pH值提高至10.8~11.5;(2)温度 水温降低时氨的溶解度增加,吹脱效率降低。例如,20℃时氨去除率为90~95%,而10℃时降至约75%,这为吹脱塔在冬季运行带来困难;(3)水力负荷 水力负荷(m3/m2.h)过大,将破坏高效吹脱所需的水流状态,而形成水幕;水力负荷过小,填料可能没有适当湿润,致使运行不良,形成干塔。一般水力负荷为2.5~5m3/m2.h;(4)气水比 对于一定塔高,增加空气流量,可提高氨去除率;但随着空气流量增加,压降也增加,所以空气流量有一限值。一般,气/水比可取2500~5000(m3/m2); (5)填料构型与高度 由于反复溅水和形成水滴是氨吹脱的关键,因此填料的形状、尺寸、间距、排列方式够都对吹脱效果有影响。一般,填料间距40~50mm,填料高度为6~7.5m。若增加填料间距,则需更大的填料高度; (6)结垢控制 填料结垢(CaCO3)特降低吹脱塔的处理效率。控制结垢的措施有:用高压水冲洗垢层;在进水中投加阻垢剂:采用不合或少含CO2的空气吹脱(如尾气吸收除氨循环使用);采用不易结垢的塑料填料代替木材等。空气吹脱法除氨,去除率可达60~95%,流程简单,处理效果稳定,基建费和运行费较低,可处理高浓度合氨废水。但气温低时吹脱效率低,填科结垢往往严重干扰运行,且吹脱出的氨对环境产生二次污染。
4折点氯化
投加过量氯或次氯酸钠(超过"折点"),使废水中氨完全氧化为N2的方法,称为折点氯化法,其反应可表示为:
NH4+十1.5HOCl0.5N2十1.5H2O十2.5H+十1.5Cl-
由反应式可知,到达折点的理论需氯(C12)量为7.6kg/kg(NH3-N),而实际需氯量在8~10kg/kg(NH3-N)。在pH=6~7进行反应,则投药量可最小。接触时间一般为0.5~2h。严格控制pH值和投氯量,可减少反应中生成有害的氯胺(如NCl3)和氯代有机物。折点氯化法对氨氮的去除率达90~100%,处理效果稳定,不受水温影响,基建费用也不高。但其运行费用高;残余氯及氯代有机物须进行后处理。
5 结语
在目前采用的四种脱氮工艺中,物理化学法由于存在运行成本高、对环境造成二次污染等问题,实际应用受到一定限制。而生物脱氮法能较为有效和彻底地除氮,且比较经济,因而得到较多应用。由于工业废水成分复杂,生物毒性大,为了取得很好的处理效果,必须针对不同行业和废水性质对其成分和抑制因素进行分析,进行适当的预处理后选择一种或几种方法联合的方式进行处理,才能达到理想的处理效果。
参考文献
[1] 王晓莲,彭永臻,等. A2/O法污水生物脱氮除磷处理技术与应用[M].北京:科学出版社,2009:67-69.
[2] 许国强,曾光明,殷志伟等. 氨氮废水处理技术现状及发展[J] . 湖北有色金属,2002,18(2):29-31.
[3]叶婴其等.工业用水处理技术[M].上海科学普及出版社199597-136.
[4]周彤等.污水的零费用脱氨 结水排水 200026(2):37-39.
[5]沈耀良等.废水生物处理新技术[M].北京:中国环境科学出版社1999 196-221.
[6]黄骏等.氨氮废水处理技术研究进展[J] .环境污染治理技术与没备 , 2002 , 3(1):65-68.
[7] 李金页,郑平.鸟粪石沉淀法在废水除磷脱氮中的应用[J].中国沼气,2004,22(1):7~10.
关键词:工业废水;处理;废水特点;发展趋势
工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。
一、工业废水分类及处理的基本原则
工业废水分类通常有以下三种:第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。处理的基本原则:
(一)优先选用无毒生产工艺代替或改革落后生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水的产生。
(二)在使用有毒原料以及产生有毒中间产物和产品过程中,应严格操作、监督,消除滴漏,减少流失,尽可能采用合理流程和设备。
(三)含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与其它废水分流,以便处理和回收有用物质。
(四)流量较大而污染较轻的废水,应经适当处理循环使用,不宜排入下水道,以免增加城市下水道和城市污水处理负荷。
(五)类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理。
(六)一些可以生物降解的有毒废水,如酚、氰废水,应先经处理后,按允许排放标准排入城市下水道,再进一步生化处理。
(七)含有难以生物降解的有毒废水,应单独处理,不应排入城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。
二、废水处理方法可按其作用分为四大类:物理处理法、化学处理法、物理化学法和生物处理法
三、主要工业废水特点与处理方法
(一)农药废水的特点及其处理方法
农药品种繁多,农药废水水质复杂。其主要特点是:(1)污染物浓度较高,化学需氧量(COD)可达每升数万mg;(2)毒性大,废水中除含有农药和中间体外,还含有酚、砷、汞等有毒物质以及许多生物难以降解的物质;(3)有恶臭,对人的呼吸道和粘膜有刺激性;(4)水质、水量不稳定。因此,农药废水对环境的污染非常严重。农药废水处理的目的是降低农药生产废水中污染物浓度,提高回收利用率,力求达到无害化。农药废水的处理方法有活性炭吸附法、湿式氧化法、溶剂萃取法、蒸馏法和活性污泥法等。但是,研制高效、低毒、低残留的新农药,这是农药发展方向。一些国家已禁止生产六六六等有机氯、有机汞农药,积极研究和使用微生物农药,这是一条从根本上防止农药废水污染环境的新途径。
(二)食品工业废水污染特点及其处理方法
食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。废水中主要污染物有(1)漂浮在废水中固体物质,如菜叶、果皮、碎肉、禽羽等;(2)悬浮在废水中的物质有油脂、蛋白质、淀粉、胶体物质等;(3)溶解在废水中的酸、碱、盐、糖类等;(4)原料夹带的泥砂及其他有机物等;(5)致病菌毒等。食品工业废水的特点是有机物质和悬浮物含量高,易腐败,一般无大的毒性。其危害主要是使水体富营养化,以致引起水生动物和鱼类死亡,促使水底沉积的有机物产生臭味,恶化水质,污染环境。
食品工业废水处理除按水质特点进行适当预处理外,一般均宜采用生物处理。如对出水水质要求很高或因废水中有机物含量很高,可采用两级曝气池或两级生物滤池,或多级生物转盘或联合使用两种生物处理装置,也可采用厌氧—需氧串联的生物处理系统。
(三)造纸工业废水处理
造纸废水主要来自造纸工业生产中的制浆和抄纸两个生产过程。制浆是把植物原料中的纤维分离出来,制成浆料,再经漂白;抄纸是把浆料稀释、成型、压榨、烘干,制成纸张。这两项工艺都排出大量废水。制浆产生的废水,污染最为严重。洗浆时排出废水呈黑褐色,称为黑水,黑水中污染物浓度很高,BOD高达5—40g/L,含有大量纤维、无机盐和色素。漂白工序排出的废水也含有大量的酸碱物质。抄纸机排出的废水,称为白水,其中含有大量纤维和在生产过程中添加的填料和胶料。造纸工业废水的处理应着重于提高循环用水率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。例如浮选法可回收白水中纤维性固体物质,回收率可达95,澄清水可回用;燃烧法可回收黑水中氢氧化纳、硫化钠、硫酸钠以及同有机物结合的其他钠盐。中和法调节废水pH值;混凝沉淀或浮选法可去除废水中悬浮固体;化学沉淀法可脱色;生物处理法可去除BOD,对牛皮纸废水较有效;湿式氧化法处理亚硫酸纸浆废水较为成功。此外,国内外也有采用反渗透、超过滤、电渗析等处理方法。
(四)印染工业废水处理
印染工业用水量大,通常每印染加工1t纺织品耗水100-200t,其中80%-90%以印染废水排出。常用的治理方法有回收利用和无害化处理。回收利用:(1)废水可按水质特点分别回收利用,如漂白煮炼废水和染色印花废水的分流,前者可以对流洗涤。一水多用,减少排放量;(2)碱液回收利用,通常采用蒸发法回收,如碱液量大,可用三效蒸发回收,碱液量小,可用薄膜蒸发回收;(3)染料回收,如士林染料可酸化成为隐巴酸,呈胶体微粒,悬浮于残液中,经沉淀过滤后回收利用。
无害化处理可分:(1)物理处理法有沉淀法和吸附法等。沉淀法主要去除废水中悬浮物;吸附法主要是去除废水中溶解的污染物和脱色。(2)化学处理法有中和法、混凝法和氧化法等。中和法在于调节废水中的酸碱度,还可降低废水的色度;混凝法在于去除废水中分散染料和胶体物质;氧化法在于氧化废水中还原性物质,使硫化染料和还原染料沉淀下来。(3)生物处理法有活性污泥、生物转盘、生物转筒和生物接触氧化法等。为了提高出水水质,达到排放标准或回收要求往往需要采用几种方法联合处理。
(五)冶金废水治理及发展趋
1.1农药废水的特点及其处理方法
农业废水对于环境的污染非常大,但是由于目前的农药品种比较多,所以农药废水的水质比较复杂,主要呈现出以下几个特点:第一,在农药废水中,污染物的种类较多,所以化学需氧量较大。第二,在农药废水中,不仅含有农药,还要其他的化学物质,毒性较大。第三,农药废水的味道非常刺鼻,会对人体的呼吸道和粘膜产生危害。第四,农药废水中的水质非常不稳定。以上种种特点决定了农药废水的污染非常严重,所以需要有效的降低废水中污染物的浓度,并且提高利用率。农药废水的处理方法有活性炭吸附法、湿式氧化法、溶剂萃取法、蒸馏法和活性污泥法等。但是,研制高效、低毒、低残留的新农药,这是农药发展方向。一些国家已禁止生产六六六等有机氯、有机汞农药,积极研究和使用微生物农药,这是一条从根本上防止农药废水污染环境的新途径。
1.2食品工业废水污染特点及其处理方法
由于在食品生产中,所采用的原料较多,所以由于食品所造成的废水中含有大量的污染物,并且水质差异很大。其中食品废水中所含有的固体污染物较多,较为常见的有菜叶、果皮、碎肉和禽羽等等,这些一般都是漂浮于废水的表面。还有一些在食品制作过程中所掺加的油脂、蛋白质和胶体物质等等,也会悬浮于废水的表面。为了调节食品的味道,还有很多的调料溶解其中,比如说酸、碱、盐和糖等等。在生产原料中,对其进行洗涤的过程中,也会有泥沙等固体物质。此外,还会一部分制毒病菌混入。总体来讲,食品工业废水中一般没有太大的毒性,基本都是悬浮物较多,这些物质经过腐烂,会对水质造成极大的影响,从而导致水中的生物大量死亡,并且影响水质,对环境造成很大的污染。食品工业废水处理除按水质特点进行适当预处理外,一般均宜采用生物处理。如对出水水质要求很高或因废水中有机物含量很高,可采用两级曝气池或两级生物滤池,或多级生物转盘或联合使用两种生物处理装置,也可采用厌氧-需氧串联的生物处理系统。
1.3造纸工业废水处理
造纸废水主要来自造纸工业生产中的制浆和抄纸两个生产过程。制浆是把植物原料中的纤维分离出来,制成浆料,再经漂白;抄纸是把浆料稀释、成型、压榨、烘干,制成纸张。这两项工艺都排出大量废水。制浆产生的废水,污染最为严重。洗浆时排出废水呈黑褐色,称为黑水,黑水中污染物浓度很高,BOD高达5~40g/L,含有大量纤维、无机盐和色素。漂白工序排出的废水也含有大量的酸碱物质。抄纸机排出的废水,称为白水,其中含有大量纤维和在生产过程中添加的填料和胶料。造纸工业废水的处理应着重于提高循环用水率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。例如,浮选法可回收白水中纤维性固体物质,回收率可达95%,澄清水可回用;燃烧法可回收黑水中氢氧化纳、硫化钠、硫酸钠以及同有机物结合的其他钠盐。中和法调节废水pH值;混凝沉淀或浮选法可去除废水中悬浮固体;化学沉淀法可脱色;生物处理法可去除BOD,对牛皮纸废水较有效;湿式氧化法处理亚硫酸纸浆废水较为成功。此外,国内外也有采用反渗透、超过滤、电渗析等处理方法。
1.4印染工业废水处理
印染工业用水量大,通常每印染加工1吨纺织品耗水100-200吨,其中80%-90%以印染废水排出。常用的治理方法有回收利用和无害化处理。回收利用(:1)废水可按水质特点分别回收利用。(2)碱液回收利用,通常采用蒸发法回收。(3)染料回收。无害化处理可分:a.物理处理法有沉淀法和吸附法等。沉淀法主要去除废水中悬浮物;吸附法主要是去除废水中溶解的污染物和脱色。b.化学处理法有中和法、混凝法和氧化法等。中和法在于调节废水中的酸碱度,还可降低废水的色度;混凝法在于去除废水中分散染料和胶体物质;氧化法在于氧化废水中还原性物质,使硫化染料和还原染料沉淀下来。c.生物处理法有活性污泥、生物转盘、生物转筒和生物接触氧化法等。为了提高出水水质,达到排放标准或回收要求往往需要采用几种方法联合处理。
2结束语