时间:2023-01-27 20:20:51
序论:在您撰写计算机图形学论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:图形学;发展;应用
1计算机图形学的发展
计算机图形学是利用计算机研究图形的表示、生成、处理,显示的科学。经过30多年的发展,计算机图形学已成为计算机科学中最为活跃的分支之一,并得到广泛的应用。1950年,第一台图形显示器作为美国麻省理工学院(MIT)旋风一号——(Whirlwind)计算机的附件诞生.该显示器用一个类似示波器的阴极射线管(CRT)来显示一些简单的图形。在整个50年代,只有电子管计算机,用机器语言编程,主要应用于科学计算,为这些计算机配置的图形设备仅具有输出功能。计算机图形学处于准备和酝酿时期,并称之为:“被动式”图形学。
2计算机图形学在曲面造型技术中的应用
曲面造型技术是计算机图形学和计算机辅助几何设计的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源机、船舶的外形放样工艺,经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Intmpolation)、拟合(Fitting)、逼近(Ap-proximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。
2.1从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(DeformationorShapeBlending):传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(fFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。
2.2从表示方法来看,以网格细分(Sub-division)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
3在计算机辅助设计与制造(CAD/CAM)的应用
这是一个最广泛,最活跃的应用领域。计算机辅助设计(ComputerAidedDesign,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。:
3.1制造业中的应用。CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UGII、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
3.2工程设计中的应用。CAD技术在工程领域巾的应用有以下几个方面:①建筑设计,包括方案设计、三维造型、建筑渲染图设计等。②结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析等。③设备设计,包括水、电、暖各种设备及管道设计。④城市规划、城市交通设计,如城市道路、高架、轻轨等。⑤市政管线设计,如自来水、污水排放、煤气等。⑥交通工程设计,如公路、桥梁、铁路等。⑦水利工程设计,如大坝、水渠等。⑧其他工程设计和管理,如房地产开发及物业管理、工程概预算等。
3.3电气和电子电路方面的应用。CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
3.4仿真模拟和动画制作。应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
3.5其他应用。CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是CAD技术发展的新趋向。
关键词:图形学;发展;应用
一、计算机图形学的发展
计算机图形学是利用计算机研究图形的表示、生成、处理,显示的科学。经过30多年的发展,计算机图形学已成为计算机科学中最为活跃的分支之一,并得到广泛的应用。1950年,第一台图形显示器作为美国麻省理工学院(MIT)旋风一号——(Whirlwind)计算机的附件诞生.该显示器用一个类似示波器的阴极射线管(CRT)来显示一些简单的图形。在整个50年代,只有电子管计算机,用机器语言编程,主要应用于科学计算,为这些计算机配置的图形设备仅具有输出功能。计算机图形学处于准备和酝酿时期,并称之为:“被动式”图形学。
二、计算机图形学在曲面造型技术中的应用
曲面造型技术是计算机图形学和计算机辅助几何设计的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源机、船舶的外形放样工艺,经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Intmpolation)、拟合(Fitting)、逼近(Ap-proximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。
2.1从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(DeformationorShapeBlending):传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(fFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。
2.2从表示方法来看,以网格细分(Sub-division)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
三、在计算机辅助设计与制造(CAD/CAM)的应用
这是一个最广泛,最活跃的应用领域。计算机辅助设计(ComputerAidedDesign,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
3.1制造业中的应用。CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UGII、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
3.2工程设计中的应用。CAD技术在工程领域巾的应用有以下几个方面:①建筑设计,包括方案设计、三维造型、建筑渲染图设计等。②结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析等。③设备设计,包括水、电、暖各种设备及管道设计。④城市规划、城市交通设计,如城市道路、高架、轻轨等。⑤市政管线设计,如自来水、污水排放、煤气等。⑥交通工程设计,如公路、桥梁、铁路等。⑦水利工程设计,如大坝、水渠等。⑧其他工程设计和管理,如房地产开发及物业管理、工程概预算等。
3.3电气和电子电路方面的应用。CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
3.4仿真模拟和动画制作。应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。:
3.5其他应用。CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是CAD技术发展的新趋向。
关键词:图形学;发展;应用
1计算机图形学的发展
计算机图形学是利用计算机研究图形的表示、生成、处理,显示的科学。经过30多年的发展,计算机图形学已成为计算机科学中最为活跃的分支之一,并得到广泛的应用。1950年,第一台图形显示器作为美国麻省理工学院(MIT)旋风一号——(Whirlwind)计算机的附件诞生.该显示器用一个类似示波器的阴极射线管(CRT)来显示一些简单的图形。在整个50年代,只有电子管计算机,用机器语言编程,主要应用于科学计算,为这些计算机配置的图形设备仅具有输出功能。计算机图形学处于准备和酝酿时期,并称之为:“被动式”图形学。
2计算机图形学在曲面造型技术中的应用
曲面造型技术是计算机图形学和计算机辅助几何设计的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源机、船舶的外形放样工艺,经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Intmpolation)、拟合(Fitting)、逼近(Ap-proximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。
2.1从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(DeformationorShapeBlending):传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(fFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。
2.2从表示方法来看,以网格细分(Sub-division)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
3在计算机辅助设计与制造(CAD/CAM)的应用
这是一个最广泛,最活跃的应用领域。计算机辅助设计(ComputerAidedDesign,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
3.1制造业中的应用。CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UGII、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
3.2工程设计中的应用。CAD技术在工程领域巾的应用有以下几个方面:①建筑设计,包括方案设计、三维造型、建筑渲染图设计等。②结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析等。③设备设计,包括水、电、暖各种设备及管道设计。④城市规划、城市交通设计,如城市道路、高架、轻轨等。⑤市政管线设计,如自来水、污水排放、煤气等。⑥交通工程设计,如公路、桥梁、铁路等。⑦水利工程设计,如大坝、水渠等。⑧其他工程设计和管理,如房地产开发及物业管理、工程概预算等。
3.3电气和电子电路方面的应用。CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
3.4仿真模拟和动画制作。应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
3.5其他应用。CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是CAD技术发展的新趋向。
关键词:图形;计算机图形学;几何计算
引言
计算机图形学是一门比较复杂也比较实用的学科,它给人们带来了一个全新的认识世界的方式。现如今,以图形为主要认知方式的“世界图形时代”已经成为数字化时代的一个重要标志。因为它不需要言语文字或者一些文学的东西来表达思想,只需要借助于视觉感官加上一些自身的体会和想象就能获得信息,因此它改变了传统的文化方式,进而成为一种在全球都适用的联络方式。为了将图形这种最简单直接的充满了信息量的物质进研究和描述就产生了计算机图形学,它属于计算机学科这的其中一部分,但它自身所具有的魅力并非其他有关学科都能拥有的。文章尝试性的将图形的本质进行了概括,对有关计算机图形学所涉及到的相关重要科学问题都有一定的分析,使它具有重要的科学价值,对相关领域产生一定影响。
1 计算机图形
计算机图形学是通过利用图形这种充满信息的东西来最直观的表达了解世界,它所研究的是客观世界并不存在的带有形状和颜色信息的图形,它一般分为图形和图像两类:图形类一般展示出来的是方式是矢量图,通常由景观的物理性质和环境的几何模型来表示在计算机中,它对环境的几何特征和图形的各个几何参数和属性参数都更为看重,因为最基本的图形单元及其包含的各类信息都会在工程图纸上有所提到;而图像类一般展示出来的方式是点阵图,通常由那些有颜色特征的点组成图形并在计算机中表示出来。那些最基础的图像单元都是通过点的属性来体现,并由计算机来产生具有不同感觉的图形等。对一幅图形进行总体的表述就是图元的几何特征和属性将,其决定一幅图的本质,如果用打印设备打印出来,就可以对客观世界进行描述。所以说抽象图形简单概括就是属性加图元。
2 计算机模型
计算机图形的第一工作就是需要建模,如果没有模型,那么图形就像无源之水一样,而模型就是由一些基本的集合元素(点、线、线、面等基本几何)按不同组合方式而成。一般来讲,模型主要是针对外部描述,而几何则注重内部特性。因而在计算机图形学中几何一词更能准确的把图形的各方面本质讲清楚。
3 计算机图形绘制
把计算机中不够具体的模型用一些人们能够理解、比较直观的图形来表达清楚就是计算机图形学里的一门重要学问,也是一项重要工作。这个工程是要求把机内的几何三维环境变换成人们能够直观了解分析的图形表达,属于几何模型的视觉呈现过程。它把多个学科的知识综合利用起来,把建立起来的模型的物理特性,几何形状,还有各个物体的相对位置及遮挡关系都在计算机上把它们模拟出来,好比拍摄电视剧一样,属于几何到画面的再次创造。对这个过程有着很多的修饰词,比方说图形合成、图像可视化、模型绘制等,渲染和显示有时也会用到。但根据我国的使用习惯,对这个过程一般习惯把它说成是绘制,一些可见面和光照等的效果,加上某些认为痕迹的消失都可以说是有走样所导致的。绘制将计算机图形学真正的魅力向世人展示,它综合的运用了美学、几何学、物理学等知识,属于计算机图形学科中的专业部分。
4 计算机图形学的定义
计算机图形学大概能够归纳为以下几个内容:软件和硬件,视图变换,图形变换和三维观测等基本知识;界面管理、窗口管理,界面设计等用户界面;视觉系统,颜色运用,几何描述等模型定义;矢量技术,光照模型,图像操作,图像储存等图像合成;高端软件,动画技术,高级建模等高级技术。目前,我国对计算机图形学的认识是,它就是利用计算机来对图形的原理、计算方法和怎样生成处理图形来进行探索研究的。简单来讲计算机图形学就等于几何加绘制。物体在计算机中的几何数据属于一个静态的概念,而用人眼的角度来绘制这些数据就属于动态流程。
5 计算机图形学的大体框架
计算机图形学的大体框架有以向量和几何变换为主的数学基础知识;不被计算机图形学方法构造所限制的各种二维、三维空间的几何模型;几何的视觉实现过程绘制;还有就是用于图形通讯的交互式图形学交互技术。
6 计算机图形学中的几何
(1)有关模型的建立和计算处理都会用到几何。现在计算机图形学的发展趋势是不仅要求能把物体的外观生成出来,还得有更好的物体建模技术。因为要把物体的三维几何特征随着时间的变化都能描述出来也并非那么轻而易举,要想把物体最为真实的一面展示出来,所用到的图形工具也将会变得更为复杂,现在绘制工作已不是那么困难,工作重心已经转移到计算机图形学的几何建模上去了。(2)导致几何造型系统不够稳定的主要原因就是几何奇异,要想解决因为几何奇异造成的影响,就得将几何计算的主要点给把握好,重新探索出一套能够解决问题的、简单、方便、有效和体系化的理论体系。从计算机图形学的本质着手,解决几何奇异的一个有效方法就是对几何引入方向性概念。以此建立一个在方向性概念上的几何算法和复杂性分析的理论体系,它的主要观点有:a.把计算机的表现形式进行统一几何;b.建立辅助几何属性来解释几何设置属性;c.仔细探究复杂性的理论;d.引入“交点特征”的新概念。(3)精确表示的边界模型中的边界元素和某些几何元素是互相对相应的,在目前的一些几何造型系统中。它们可以形成直线、曲线等各种几何图形,使得它们有着非常复杂的求交情况。当一般用到20多种元素时,它的求交函数将是这些元素的十几倍。如果在三维领域中,将会有更为复杂的几何问题。而有些像隐藏面、线的消除和一些用来提升图形效果的看似绘制的内容,其实从根本上来说,依然是几何计算的问题。几何计算主要是在时间和光线跟踪上有一些消耗,加上景色和光线的交点等各个光入射、折射线之间的计算。
7 结束语
计算机图形学主要是针对把客观事物在计算机当中通过建模的方式进行描述和处理,和将在计算机当中建立好的抽象模型用具体的动态或者静态的方式表达出来(俗称视觉再现)这两个问题进行探索和研究。图形在本质上属于线形、结构、颜色等图形基本元素所组合而成的,因此,图形的本质等于图元加属性。而计算机图形学就等于几何加绘制。因此在计算机图形学中,处理几何奇异问题是几何计算的重点,而几何计算又是这个学科的根本,所以需要引入几何方向性概念才能建立合理的理论体系。总体来讲,计算机图形学是由几何、绘制、交互和数学基础等构成的。
参考文献
[1]孙家广,胡事民.计算机图形学基础教程[M].北京:清华大学出版社,2005.
[2]何援军.计算机图形[M].北京:机械工业出版社,2006.
1. 计算机图形学
1.1 计算机图形学概述
我们现代人生活在各种各样的信息之中,如何应用计算机处理信息,处理图形成为了一个越来越重要的课题。本论文所要介绍的计算机图形技术,是计算机领域的热门领域之一,它是同电子硬件和计算机的周边设备一同发展而来。随着人类在航空航天、军事和通信等领域的突破,计算机图形学也得到了很快的发展。
计算机图形学是一门实用计算机产生、显示以及处理图形界面的知识体系。计算机图形学已经变得越来越重要,主要原因是:人们接收和发出信息,图形是很好的一种传递信息的方式。一个图形本身,就具有很丰富的信息,人们根据图形能够很自然快速地与外界进行交流。
1.2 计算机图形学研究热点
计算机图形学主要研究以下三个方面的内容。第一:隐藏线(面)的消除;第二:基本曲线的裁剪以及绘制;第三:现代图形学热点研究的内容,主要是虚拟现实技术、可视化、三维立体的重建等等。
由于在一个图形应用或图形软件中要大量重复调用这些基础算法,因此在这方面的任何进步都会对整个图形系统产生很大的影响。计算机图形学的基础算法经过人们几十年的研究,己比较成熟。但每一个进步对解决图形技术所面临的存储、传输、显示等问题都有很大的帮助。
2. 基础算法的研究
2.1 多边形裁剪算法
裁剪是处理图形一种很基础的方法,常见的裁剪操作主要有将不同的图形裁剪拼接形成新的图形。我们可以看出,裁剪算法在计算机图形学中是一种十分基础但是却又十分重要的操作[1]。
本论文所提到的裁剪方法,主要是针对凸多边形的。裁剪方法主要可以分为四个方法:中点算法、CS算法、CB算法、梁B算法。
(1)CS算法是Cohen-Sutherland的一种分区编码算法[2]。CS算法以前是计算机图形学中很重要的一种算法。CS算法对线段可以分为以下三种情况:窗内、窗外以及其它情况。我们在使用CS算法的时候,需要判断线段两端端点的编码,进而判断窗口和线段之间的位置关系,这种算法的缺点是对于判断所做的工作比其他算法多。端点编码检查算法的核心代码如下:
end point code algorithm
P1 and P2 are the end points of the line
xL,xn,yT,yB are the left, right, top and bottom window coordinates calculate the end point codes
put the codes for each end into 1*4 arrays called P1code and P2code
first end point: P1
if x1 < xL then P1code(4) = 1 else P1code(4) = 0
if x1 > xR then P1code(3) = 1 else P1code(3) = 0
if y1 < yB then P1code(2) = 1 else P1code(2) = 0
if y1 < yT then P1code(1) = 1 else P1code(1) = 0
second end point: P2
if x2 < xL then P1code(4) = 1 else P1code(4) = 0
if x2 > xR then P1code(3) = 1 else P1code(3) = 0
if y2 < yB then P1code(2) = 1 else P1code(2) = 0
if y2 < yT then P1code(1) = 1 else P1code(1) = 0
finish
(2)中点算法是基于硬件实现的。重点算法同样把窗口和线段的关系分成三种情况:窗内、窗外以及其它情况。对于窗内和窗外这两种情况,中点算法和CS算法的处理方法相同;对于第三种情况,中点算法简单地将线段分成两段。中点算法是基于硬件的,所以算法比较简单,相对于用软件来实现,更偏重于用硬件来实现。
(3)CB算法能够裁剪任意一种凸多边形的窗口。CB算法会将交点简化成上下两组,主要判断的方法是:直线段的方向矢量和窗口边法矢量的点积是否大于零。CB算法会取上组部分最小的交点以及下组最大的交点,作为可见部分的端点。由于CB算法更适用于一般情况,所以CB算法的运算更加复杂。
(4)梁B算法在四种方法中,运算速度最快。但是在某些特殊情况下,梁B算法也需要进行大量的运算。
四种基础算法的适用情况,如表2-1所示。
2.2 逐点生成算法
上一小节主要介绍了图像的裁剪,本小节的逐点生成算法主要着重于研究图形曲线的绘制。由于任何图像都是根据图形而来,而任何图形都需要绘制,所以图形曲线的绘制也是一项非常基础性的研究课题。
科学家最开始采用几何算法作为绘图算法,这是因为以前的图形显示器都是扫描类型的显示器。目前这种算法已经很少采用,但是在工程制图的绘制过程中,受到各方面的限制,我们往往不得不采取这种方法。这种算法的基本思想就是:步长之间的两个点,采取直线的方法连接。但是由于步长很小,我们实际看起来就是一条曲线。由于绘制条件以及算法本身的限制,这类算法有着自身的缺点:运算量非常大而且绘制不够精细。
不同于曲线的几何算法,像素级生成算法是一种全新的基于计算机的算法,这种算法主要分成两种。第一种是对参数方程进行求导,进而计算出小于或等于一个像素迭代步长的距离的点。这类算法的优点是能够适用于大多数曲线的绘制;这类算法的缺点是计算量很大,而且会造成多余的计算。第二种是根据曲线的隐式方程,找出曲线走向中下一个像素中最近的点。正是由于采用了这种原理进行曲线绘制,所以曲线的误差在一个像素范围内。这类算法的优点是速度快,因为每一次的步长都是一个像素点的距离;这类算法的缺点是适用范围狭窄[3]。
3. 结论
我们现代人生活在各种各样的信息之中,如何应用计算机处理信息,处理图形成为了一个越来越重要的课题。本论文主要介绍了计算机图形学,以及两种基础算法:多边形裁剪算法和逐点生成算法。对于这些基础算法的研究,对提高计算机图形系统系能具有重要的意义。
参考文献
[1]高云 计算机图形学若干基础算法的研究[J] 沈阳工业大学,2002.
[2]沈颖,宋文强 计算机图形学的基本算法实现研究[J] 电脑知识与技术,2009,17(5):4518-4519.
【关键词】计算机图形学 电影 动画 分类 原理 应用
1 引言
随着计算机应用技术的迅猛发展,促进了一系列相关学科的发展。计算机图形学便是其一。1963年,美国人伊凡・苏泽兰在麻省理工学院毕业论文课题是关于三维交互式图形系统,在此基础上发表了题目为《画板》的博士毕业论文, 这篇毕业论文是计算机图形学里程碑的标志,它的发表标志着计算机图形学科正式诞生。计算机图形学它标志着计算机处理方式由处理符号系统转变为处理图形系统的方式,计算机图形学的出现,计算机处理方式可以部分地模拟现实图形和展现人的右脑功能,因此计算机图形学的理论和实践具有划时代的意义。
在计算机图形学发展和应用的过程中,最具震撼性和实用性的就是电影动画技术。电影动画为计算机图形学提供了新鲜的血液,打开了新视角,自然界的一切美丽景象都可以通过计算机生动形象地再现构造宏观、微观世界。
2 计算机图形处理电影动画的分类
计算机图形处理电影动画是计算机图形学和电影艺术相结合,并且相互促进的产物,计算机软硬件和图形图像算法高速发展促进了计算机图形学的突飞猛进。计算机电影动画技术将图形、图案和画面或者其中一部分显示在屏幕上,并且按照一定规律或预定的要求在屏幕上移动、变换,从而使计算机显示出图形动态变换过程。
电影动画是运动中的艺术,运动的画面是电影动画的表现形式,运动是电影动画的要素,运动的表现形式,才促使了二维和三维动画的发展。计算机动画以其制作方法和表现特征的两种表现形式就是二维电影动画和三维电影动画。
2.1 二维电影动画
传统的电影卡通动画,是大量的画片,每幅画片高速翻转以便实现是连续播放多帧画面,每幅画面表述的是运动物体的若干个瞬间的定格,利用观看者在大脑内残留的瞬间视觉感觉而得到运动的视觉感受。传统的电影卡通动画是先画出一头一尾两个关键帧图画,然后在两个关键帧中间插入一些列图画画从而生成中间一系列画。展现平面图形是计算机二维电影动画的一大特点,是对传统动画制作的继承和发展,制作时就像传统在纸上作画,通过计算机图形学复杂的算法将一些列计算机图画对象的移动、变形、变色等手法表现出传统电影动画运动的效果。
ANIMO是世界上最受欢迎的、使用最广的二维动画系统动画制作软件,它是英国Cambridge Animation公司核心产品。ANIMO向计算机图形设计者提供了灵活的颜色模板创建、修改调色板和调整颜色的工具,这些功能有助于二维电影动画前期制作和影片后期合成方面都有独到的技术特点。ANIMO虽然不是最专业的二维电影动画制作软件,但是它具有更大的灵活性,软件独有的内部环境能够将二维电影动画和三维电影动画完美的结合起来。
ANIMO经常用于二维电影动画和真实场景的结合,90年代篮球运动球星乔丹和华纳动画人物共同主演的《空中大灌篮》,它是将二维电影动画与三维电影动画真实场景完美结合的成功范例。ANIMO软件具有面向动画师设计的工作界面,在ANIOM软件制作电影动画的同时,需要一台高清扫描仪,底板动画图片上放在扫描仪内进行扫描,扫描后的画稿几乎保持了动画设计者原始动画图片的线条,ANIMO软件的快速上色工具提供了给图画自动上色和自动线条封闭功能,并和软件的颜色模型编辑器集成在一起,软件提供了不受数目限制的颜色数量和调色板种类。三维电影动画中的阴影和灯光效果是最难转化为二维电影动画的,ANIMO却可以将这些难点完美的结合在一起,具有多种特技效果处理效果,包括动画的灯光效果、物体阴影变换、图片背景的模糊处理、拍摄的摄像机镜头的移动、波纹起伏波浪震动的效果展现等等,并可与二维电影动画、三维电影动画和实拍镜头进行合成处理。它所提供的可视化场景图画可以让动画设计师在软件内只用几个简单的操作步骤就可完成比较复杂的动画制作,提高了计算机二维电影动画制作的工作效率和速度。
2.2 三维电影动画
三维电影动画则是展示立体的图形,三维电影动画的制作过程就好像是在摄影棚中拍电影的景象:三维图像影像制作首先是在布置摄像对象所处的位置、动画制作者规定其运动轨迹、并按照这个运动轨迹进行拍摄、各种灯光效果被制作者安排的妥当,摄影机可以布置在特定位置上或者也可根据拍摄内容设定摄影机的推拉摇移摆动,最后利用计算机用图形算法计算出这个摄影机所见到的动态图像效果。
三维电影动画制作首先要创建物体模型结构,其次是让这些物体在空间内动起来,如变化图形、变化颜色、移动位置、旋转物体等制作手段。再通过打灯光等特效生成栩栩如生的画面。计算机三维电影动画数据是在计算机内部自动生成的。
摘要:本文多方面系统论述了学习“计算机图形学”课程的必要性,分析了该课程的学习没有受到人们重视的原因,指出系统学习该课程是读者掌握数据计算类型的程序系统设计基本方法与计算机仿真入门的有效途径,使读者对“计算机图形学”课程的学习有一个正确的认识。
关键词:计算机图形学;计算机仿真;科学计算;程序设计基本方法;可视化
中图分类号:G642
文献标识码:B
1 “计算机图形学”的学科特性
所谓“计算机图形学”是计算机仿真(即按模型计算以生成图像)与科学计算(即通过在计算机上建立模型并模拟物理过程来进行科学调查和研究)的一种基本形式,是研究图形数据模型在计算机内部的产生、设计与构造过程,它是显示图形不可分割的前提(这相当于画家作画之前,对绘画作品的设计思想、表达方式、绘画构思、作品内容与结构等的创作与思考过程;只有当这个绘画作品设计方案成熟之后,画家才动笔绘画);而图形显示是用点、线、面、色彩、纹理等可视化的数学方式表达这种数据仿真计算结果的数学含义、或表达仿真过程中各种实体仿真模型与场景效果的物理含义的一种直观表达方式。参考文献[1,2]已向读者证明这一结论,只有这样,才能较好的理顺“计算机图形学”课程的授课关系,使读者建立用计算机生成图形的完整概念。
我们用这一指导思想主导“计算机图形学”教育20多年,并用“计算机图形学”的授课内容解决了多年来国内计算机程序设计课程没有解决好的计算可行性(可计算性的实现前提)这一教学难题,使该课程成为初学者学习计算机程序设计基本方法、认识图形数据模型构造与显示的一般规律、进行可视化应用程序开发三位一体教学目的的最佳选择,并有效地弥补了从算法语言、数据结构到软件工程之间关于应用程序编程系统训练与计算机仿真等教学环节的缺失。这种教学方法使“计算机图形学”的教学内容完全纳入了计算机科学的教育体系,同时使“计算机图形学”与“数据库”、“网络通信”这三门课程成为现代计算机应用程序的三个基本特征(数据计算、数据存储与检索、数据联网通信)的典型代表,由此转变了“计算机图形学”课程的教育观念与教育思想。在教学过程中,作者曾遇到学生们提出的多种学习问题,今整理成文,以飨读者。
2学习“计算机图形学”的原因与重要性
为什么要学“计算机图形学”,这是计算机专业选修“计算机图形学”课程的读者关心的首要问题。众所周知,计算机科学是处理信息技术(IT)的一门学科,通信科学是传输信息技术的一门学科。对于信息技术而言,常用于表达信息数据含义的4种方式分别是①数字与字符方式表述;②图形方式显示;③播放声音表述;④用机械力表达(即把电信号转换成机械运动)。这4种表达信息数据含义的方式又称信息数据的多媒体表达方式(即多媒体技术)。其中,用图形显示这种方式表达信息数据的含义符合人们观察了解事物运动规律的习惯,而且信息容量大,直观方便,同时是人们获得外部世界信息来源的主要依据;也就是说信息数据的可视化是信息技术与计算机科学发展的一种潮流与必然趋势。随着计算机工业的发展与进步,实际应用课题与现代程序设计对信息数据的可视化处理要求已经越来越高,这就要求人们深入研究并掌握图形显示的一般规律,才能更好的为计算机信息数据的可视化服务。
按现代教科书对“计算机图形学”的新定义,“计算机图形学”代表了计算机应用学科的一个重要发展方向――科学计算、计算机仿真、计算机辅助设计、信息数据的可视化、动画与游戏、虚拟现实、数字娱乐,其编程应用还涉及程序设计方法。它们代表了当今计算机技术的发展潮流与应用水平,是解决计算机专业人才出路的有效途径之一;而“计算机图形学”是该方向的公共基础课程,是目前国内计算机本科教育应当加强的内容。显然,仅仅靠学习计算机程序设计语言、数据结构、编译原理、操作系统、数据库、软件工程、形式语言与自动机理论等课程还不能完全使学生的能力直接达到开发这些应用软件的目的,因为原则上这些课程是为用户使用计算机的计算功能而系统量身打造的软件使用工具(数据结构、软件工程除外),它们的教学目的是为用户掌握并研制这些软件工具服
务、而不是为用户使用这些软件工具系统地开发应用程序而开设的课程。计算机专业主要沿这条主线向前发展:研究、设计、制造计算机硬件设备,为用户使用计算机的计算等功能提供一切便利的手段、方法与软件辅助工具,这包括总结用户使用计算机的基本类型与模式,而对于复杂且很难全面概括使用计算机的方法等、则留给一般用户自己解决,这或许是计算机专业本科课堂教学没有介绍对数据计算类型的应用软件系统开发要遵循的基本规律与发展模式的原因之一,“计算机图形学”的教学正好可以弥补这个缺陷。
由于计算机教育本身并不能直接提供认识世界、改造世界的能力,加之我国没有掌握具有国际竞争能力的计算机硬件与系统软件的核心开发技术,这使中国大量的优秀人才在计算机专业上的最后发展受到了严重制约。而“计算机图形学”的仿真方法为计算机专业人员的发展提供了这样一种新的学习方法与重新选择的机遇,它能为计算机专业人员学习其他行业的专业知识(即学习新专业的物理、数学方法)、成为其他行业的专家助手,进行新行业系统仿真与系统设计以获得新生;由于各行业都有各自的研究领域与待解决的研究问题、研究方法与理论研究模型等,当用计算机仿真的方法对这些研究课题进行辅助研究,并用图形等可视化的方法表达计算机仿真研究的中间结果与最终成果时,这将使计算机的应用走向深入。
科学研究的目的就是探索未知世界、认识世界、改造世界、造福于人类自己,而“计算机图形学”的教育正是遵循这样一条主线:通过物理实验认识待解决问题的本质,并用数学模型的方法来描述这种物理现象的变化过程,从而达到用计算机程序设计的方法来仿真光线在自然界中的传播,以及光线在照相机中传播而生成图像效果,这类物理仿真过程是科学研究方法中的一种基本形式,这种科学研究方法的教育思想(包括人文精神)是国内计算机专业本科课堂教育所欠缺的(计算机专业往往专注于数理逻辑思想的基础训练)――即“计算机图形学”的教育,不仅拓展了计算机专业人才的知识领域,也为其毕业增加了就业渠道,同时能培养计算机专业人员的基本科学研究素养,这正是目前国内计算机教育改革所追求的目标之一。
需要说明,全日制普通本科教育是普适教育,它需要建立各专业自己的知识框架,学习基本的概念,了解基本的范畴,明确其发展方向,计算机专业也是如此。本科教育重在基础,提高本科教育质量与水平并非拔高与创新,而是要做到全面、均衡的发展,除要求学生掌握本学科专业已成熟的系统理论知识外,还需培养学生用学科的基本思想与方法独立自主分析问题、解决问题的能力,这种理论与实践相结合的教育方法,能确保学生今后得到稳步的发展。“计算机图形学”就是培养学生利用计算机、数学、物理等学科的系统知识解决实际应用问题能力的一种有效方法,这样培养的学生才能适应社会竞争与选择的需求;只有在研究生阶段,通过再次系统学习、阅读原著与相关论文并参与项目开发等活动,达到全面提升对学科的认识能力,并向某一个研究方向发展、去探索未知世界的变化规律、解决前人没有解决好的难题、逐步走入学术研究的殿堂(即创新教育);当然人们也能在日后的工作中慢慢积累这种工作能力。
文献[2,3]系统论述了“计算机图形学”课程在计算机科学教育中的作用与地位。目前很难找出一门具有像“计算机图形学”类似重要性与多样性的其它计算机本科专业基础课程,能使读者正确掌握数据计算类型的计算机应用程序设计的基本方法,并使计算机这一工具直接服务于社会,这是我们应该重视“计算机图形学”教育的根本原因。
3学习“计算机图形学”的方法
由于“计算机图形学”属于计算机应用软件的范畴,因此,数据计算类型的应用软件的设计方法就是学习“计算机图形学”应该遵循的原则。就“计算机图形学”课程的学习而言,它要求:
(1) 全面掌握程序设计语言的特性与数据结构的基本内容,是实现“计算机图形学”编程的基础。
(2) 掌握建立解决实际应用问题的数学模型与软件系统的概念,是计算机程序设计的两个关键点。软件系统是一个能自动运行的综合执行程序,它能从输入、存储、运算处理、输出等方面全面处理用户在某个领域中提出的诸多数学模型并完成其模型描述数据的加工任务,使用户很容易明确这种软件的组成、功能与使用范围。一般利用二维图形的简单性,可以较完整的介绍二维图形软件系统这一概念。软件系统的概念是目前程序设计语言与数据结构课程中所欠缺的关键内容。
(3) 正确的认识“计算机图形学”与计算机仿真的相互关系。“计算机图形学”的重点与难点在三维图形的数学模型研制(包括照相机模型,灯光模型,颜色模型,照明模型,物体的几何模型,物体表面的材质与纹理模型等)与模型描述数据的构造上;由于计算机图形学追求像照相机拍照一样的三维真实感图形显示效果,这决定了要在计算机中使用物理学仿真的方法(仿真光线在自然界中的传播所产生的显示效果或把这种传播效果映射至物体的表面上)才能达到这一目的,这自然需要读者对相应的物理知识有个基本的了解才能进行。
(4) 需要了解一些计算机仿真的基础知识,以确保“计算机图形学”的物理仿真教学过程不会出现偏差。
计算机仿真的主要过程分系统、模型、编程实现(仿真算法)、评估四个步骤。这里①系统是指相互关联又相互作用着的研究对象的有机组合,它决定了被研究考察对象的组成与边界范围。②计算机仿真一般可以用数学模型(简称模型)的方法代替实物研究对象,事实上模型也可以是对现实世界的事务、现象、过程或系统的简化描述,但它反映了实际问题最本质的特征和量的关系。目前“计算机图形学”所述的模型多限于对所研究对象的物理性质、运动变化规律等特性的一种数学描述,它使人们能解释那些难以直接观察到的事物的内部构造、事物的变化以及事物之间的关系――即模型描述了现实世界中有显著影响的因素和相互关系。但这种描述有一定的使用条件与限制范围,研究的目的不同,对该研究对象的数学模型的描述方法以及模型的种类会不一样。③仿真(编程实现)就是在模型上做实验,从理论上测试构建的理想系统的动态行为特性,以评估系统的效能。④系统的用途不一样,评估的方法也不同,人们往往用事先约定的一组指标来评估仿真系统的结果;当所得仿真结果没有达到预期的理想效果时,人们往往不断改进仿真模型与仿真算法。例如计算机图形系统,用途可以是显示三维图形,查看它的真实感逼真显示效果就是人们主要关心的问题;模型的运动与操作(如游戏),看它的操作性与故事情节等如何表达用户的情感与智能(简称好玩)就是人们关心的主要问题;机械设备的综合运动与仿真,考察所设计的复杂设备的工作性能就是人们关心的主要问题;电气系统的系统仿真,能考察系统工作参数如何设计以满足用户的不同需求;作战系统的仿真模拟,能考察作战人员的训练水平、武器性能、指挥作战方式对作战进程的不同影响与作战效能,等等。
(5) 努力把图形学所介绍的各种模型与算法(算法是对模型描述数据的加工与变换处理的步骤与方法,“计算机图形学”中的主要算法有各种线段图形的生成与实面积多边形的填充算法、着色算法、消隐算法、纹理映射算法、阴影算法,光线跟踪算法与辐射度算法)都编写成程序代码,这使读者能直接体验自己的学习效果,也是其它课程不容易做到的。编程时要考虑算法的复杂度,特别是按照软件系统的方法把编写的程序代码组成一个系统整体,这是形成成熟商品软件很重要的前提。显然,此时软件系统中的各种数学模型反映了仿真系统中研究对象之间的相互关系。
(6) 掌握“计算机图形学”打造的绘图工具,是可视化应用软件编程的重要基础。用“计算机图形学”知识研制的工具常用的有OpenGL与Direct3D等三维图形标准,虚拟现实建模语言VRML。而三维动画与CAD等软件可以看成是“计算机图形学”为影视制作、游戏建模与计算机辅助设计部门打造的专业计算工具。仅把图形标准与计算机绘图等应用当作“计算机图形学”很不完备,因为它不能在课堂教学中向读者正确、完整、系统地展示计算机图形学学科发展的基本规律,并人为地割裂了计算机图形数据模型的构造与显示这两个过程。
(7) 学会看中英文专业杂志等参考资料,这些参考资料记录了学科的发展历程与学科当前的研究热点(一本教科书不可能全部包含这些内容),且是一种更重要、复杂、深入的学习研究方法,也是目前国内本科教育的弱项(因为国际上最新的研究成果多用英文发表)。只有这样,才能跟踪计算机图形学的最新发展并站在学科发展的前沿、才能开阔人们的视野并有所鉴别,便于读者日后针对用户的多种需求展开开创性创新或针对已有成果的不足、提出修补与改进等渐进性创新等学术研究活动。
(8) 勇于参与课程实践与项目开发,是巩固、检验所学知识、提高实际动手能力的好方法。实际软件开发工作往往是多种知识的综合应用,它需要对实际处理事务有一个比较透彻的了解(用户需求报告)、并建立这些待解决问题的数学模型与系统流程后才能有效进行(按照软件工程的方法组织实施)。
只有把自己开发的软件做成有效商品、服务于社会,才能使所学的知识转变成生产力,才能使自己得到升华;同时也应注意把自己的心得与研究成果总结发表,与人共享;还应参加学术活动,注意留意不同学术流派之间的观点、思想、方法与学术动态,取长补短,形成自己的风格,广结人缘,相互交流,为学科建设添砖加瓦。
(9) 一本计算机图形学教科书的容量使其只能介绍计算机图形学发展历程中产生的最基本、最经典的模型与算法,这些内容是人们耳熟能详的物理原理与相对简单的数学知识在计算机中的综合应用,太复杂的计算关系因会影响图形的显示速度而一般不采用;目前计算机图形学教科书的理论体系已成熟且“计算机图形学”的教学内容已经构成了一个大系统,这使“计算机图形学”的教学过程变得简单、容易。
4目前国内“计算机图形学”教育未受到重视的原因分析
既然如此,为什么目前人们感觉“计算机图形学”教育的受重视的程度不如数据库与网络通信等计算机应用软件呢?笔者认为其原因之一在于:这是因为“计算机图形学”造就的工具即图形标准的特殊应用环境要求限制了它在很大一部分应用程序中的具体应用;三维图形标准目前仅仅在游戏领域获得了商业上的成功,一些应用软件不调用图形标准也能自己绘图;国内的计算机应用程序可视化的开发要求暂时还较低;关键是作为学科领头羊的美国人目前还没有把“计算机图形学”课程作为计算机本科专业的核心课程,这是因为他们对“计算机图形学”课程的本质与其在计算机学科中的作用与地位认识不到位所致,美国人图形学这种教育现状(目前多以图形标准的原理讲授为主)和局限性与美国人在3D游戏、计算机动画、计算机辅助设计等应用软件的开发上执世界牛耳之地位不相称。
当然,早期计算机图形学教科书编写内容、体系的不够成熟,也影响了人们对“计算机图形学”课程的认识与学习的积极性。例如仅停留在数学公式与算法的层面上介绍二维、三维图形的生成而不注重其建模思想与方法的介绍,且人为的把物体几何模型的构建与其图形显示分解成“计算机辅助几何设计”与“计算机图形学”这两门课程,这直接导致图形学课程教学内容缺少被处理的图形显示对象,加之计算机课程与图形学的教育又没有软件系统的概念,这样安排虽然能满足图形标准等商业软件的发展需求,但却很难让初学者全面掌握“计算机图形学”学科系统性的概念、思想和方法与学科发展的基本规律――用数学模型的方法指导编程实践,在计算复杂性可接受的条件下,针对已有成果中存在的不足,不断用新的数学模型与仿真算法等方法对其进行改进,使图形学的数学仿真过程不断的逼近现实物体模型(包括刚体、软体、流体、气体)的构造、运动、变形、切割和拼接与反光效果的显示这一真实的物理变化过程。即初学者没有用计算机生成图形的完整概念,这也是以往人们认为计算机图形学课程难教、难学的主要原因。
由于“计算机图形学”的绘图原理不像数据库软件那样,数据库的功能可以被所有的应用程序所调用;也不像通信软件那样,所有要联网的计算机都离不开通信技术与网络技术,而计算机显卡工业、3D游戏、计算机动画、计算机辅助设计等产业的市场份额小于数据库与计算机通信等产业的市场份额,即应用软件的商业价值决定了它们在人们工作与学习中的地位。
参考文献:
[1] 魏海涛. 计算机图形学(第2版)[M]. 北京:电子工业出版社,2007.
[2] 魏海涛. 科学的构建‘计算机图形学’的教学内容,促进计算学科的全面发展[J]. 计算机教育,2008,(10).