时间:2022-09-10 14:13:45
序论:在您撰写装置设计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1设计模式
设计模式[4-5](designpatterns)是在设计面向对象软件的过程中记录的知识和经验,它是对被用来在特定场景下解决一般设计问题的类和相互通信的对象的描述。设计模式的目的就是复用这些面向对象软件设计[6-7]的解决方案以及便于这些抽象解决方案的积累和交流。软件设计有2种设计方法,分别是结构化设计方法和面向对象设计方法[8]。设计模式作为面向对象软件设计过程中知识和经验的总结成果,具有很重要的作用,可以帮助设计者去分析和解决问题。本文主要关注了工厂模式,一个设计模式的描述一般包含模式名、意图、结构、参与者、协作等5个方面。本文结合这5个方面详细介绍工厂方法模式。1)模式名。工厂方法(factorymethod)模式,又称为虚构造器(virtualconstructor)模式。2)意图。定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法模式使一个类的实例化延迟到子类。3)结构。工厂方法模式的结构图如图1所示。4)参与者。产品类定义工厂方法所创建的对象的接口,实际产品类实现产品类;接口创建者类声明工厂方法,该方法返回一个产品类型的对象。创建者类也可以定义一个工厂方法的默认实现,其返回一个默认的实际创建者对象。实际创建者类重定义工厂方法返回一个实际创建者类实例。5)协作。创建者类依赖于其子类来定义工厂方法,所以返回一个适当的实际创建者实例。一般地,工厂模式适用于类创建对象延迟到子类和类创建对象未知的时候。在实际使用过程中,工厂方法模式的父类和子类分别用来定义创建对象的接口和负责生成具体的对象,实例化的过程在子类中实现。由于工厂方法模式隐藏了子类实例化不同对象的创建过程,降低了层次之间的耦合性,满足了软件扩展性的需求,从而最大程度地减少增加新子类时需要付出的代价。这个特性很好地满足了在规约转换软件中需要不断升级和开发新规约的特点。
2通信软件的开发方案
传统的FACTS装置通信软件针对具体的通信规约,每个软件只能处理单个的通信规约,造成了巨大的资源浪费并且效率低下。本软件采用通用型通信软件方案[9],如图2所示。在该方案中,变电站内FACTS装置可只有一个通信软件,该通信软件能接入系统中所有FACTS装置,并且完成与变电站监控系统的信息交换。使用这种通信软件将大大减少开发通信模块的工作,提高了代码的复用率。根据软件需求分析[10]得出通信软件应分为3部分开发。1)系统配置。此部分主要用来配置系统中FACTS装置信息、接入设备信息、通道信息和规约信息。FACTS装置信息主要包括装置地址、数据传输通道信息和装置本身具体的遥测、遥信等运行信息;接入设备信息主要包括接入设备地址、数据传输通道和接入的具体遥测、遥信等信息;通道信息主要配置数据传输通道使用的规约以及辅助的通道地址、端口号等;规约信息用来配置具体的使用的规约库。2)数据采集与处理。数据采集与处理系统是通信过程上行和下行的数据按照具体的数据格式采集和发送出去。这是通信软件实际进行数据交换的地方。3)数据转换。数据转换就是根据系统配置,FACTS装置与接入设备之间进行数据通信,完成信息的无缝传输。这是通信软件的核心处理部分。
3IEC60850-103规约向IEC61850标准接入的实现示例
3.1工厂模式在通信软件中的应用在进行通信软件的设计时,FACTS装置通信软件使用的通信规约不尽相同。因此,本软件开发了一些常用的通信规约,使得其之间能够相互转换。下面结合工厂方法模式说明IEC60850-103规约向IEC61850标准转换的过程。在进行通信软件的设计时,不同的规约采用的物理通道不同,也就是通信方式的不同,而实际的通信方式的种类远小于规约的种类,如果把具体的通信方式写在具体的规约中,当不同的规约使用相同的通信方式时,就会出现大量重复劳动的现象。此时把不同的通信方式抽象成一个基类,由具体的规约在使用时去实例化自己的通信方式。因此在抽象工厂中定义了创建通道和创建规约的接口,使得规约的创建和通道的创建分开。这样使用工厂模式可以很方便地开发新的规约,而不需要更改原来已经完成的系统,每增加一个规约只需要增加自己的工厂方法和实现类即可。工厂模式应用如图3所示。1)抽象工厂类。将抽象工厂类命名为IFactory,主要是定义了抽象的创建通道和规约的方法。分别是createProtocol()和createChannel()。2)具体工厂类。将IEC61850工厂类命名为IEC61850Factory,继承于IFactory类。实现了具体的规约和通道的创建过程。3)抽象通道类命名为IChannel,定义了通道的打开、关闭、读和写的方法以及通道状态判别的方法。4)TCP通道类命名为TCP,继承于IChannel类,实现了TCP通信的具体工作。5)抽象规约类命名为IProtocol。主要是定义了通用规约的通用数据变量和处理方法。6)103规约类命名为IEC103,继承于IProtocol类。主要工作是定义了将采集到的数据局转换为中间数据IDevData的方法,以及将ICtrlData中的数据下发的方法。7)IEC61850标准类命名为IEC61850,继承于IProtocol类。主要工作是定义了将IDevData中的数据进行解析的方法和将需要下发的命令转换为ICtrlData中间数据的方法。
3.2数据结构介绍在103规约向IEC61850转换的过程中,103规约作为设备侧使用的规约,IEC61850作为转出侧的规约。转换的实际过程要借助于中间数据来完成,数据的流向为双向,即103规约可以向IEC61850上送数据,IEC61850也可以向103规约下发命令。具体的转换过程为:103规约将自己采集到的数据转换为中间数据IDevData格式,IEC61850从IDevData中获取自己需要的数据,与此相反,IEC61850将需要下发的命令转换为中间数据ICtrlData格式,103规约从ICtrlData中获得下发的命令并下发到自己的装置上去。至此,103规约向IEC61850标准的转换工作完成。同时,由于IDevData和ICtrlData为中间数据格式,因此当别的规约需要这些数据的时候也可以获取,这样103就可以不需要针对其他的规约另行开发,直接就可以完成和其他规约转换的工作。在FACTS装置通信软件中存在2种意义上规约,分别是装置侧规约和转出侧规约,而设备侧和转出侧并不进行直接的通信,因此需要一种能够分别和两者进行数据交换的中间数据结构,就是IDevData和ICtrlData两个数据类。
3.3IEC61850数据映射IEC61850[11]是基于制造报文规范(MMS)来实现双方的通信,而IEC61850-80-1[12]中提出了可以扩充原有的数据类型,同时也给出了IEC60850-5-101和IEC60850-5-104数据向IEC61850映射的列子,结构如下所示。其中casdu、ioa和ti分别映射的是IEC61850中的逻辑设备(logicaldevice)、逻辑节点(logicalnode)、数据(data)。而传统的规约中仍是靠点索引来建模,即通过CPU号、组号和点号等来组织数据,因此传统规约向IEC61850转换时必然要进行一定的映射,这样就利用扩展的数据类型使得传统数据点和IEC61850数据一一对应起来。当系统在初始化时,将中间数据中的哈希表进行初始化。当IEC61850作为智能设备规约时,通过解析配置文件名,得到主键,按照一定的解析方法就可以得到对应传统规约的CPU号、组号和点号;而IEC61850作为控制规约时,将转出的CPU号、组号和点号按照一定的组织方法形成具体的主键,即可在哈希表中得到唯一对应的IEC61850的SCL脚本。这样使得IEC61850和传统规约就可以方便的进行规约转换工作。
4结论
电路设计尤其是超声波信号的收发处理采用诸如TX734激励电路、MAX2038回波放大处理电路等专用IC效果固然理想,但考虑到研发专用设备仅需小批量试制的因素,故在电路方案选型设计时遵循简单实用、器件易于采购的原则,尽量选用通用元器件实现,系统电路主要由超声波发射激励和电源变换单元、超声波回波信号处理单元、时间差测量单元、单片机控制和数据处理单元组成。排版布线亦尽量参照IC生产厂商的DEMO方案,采用贴片元件的双面PCB设计制作,以提高样机研发的一次性成功率。
1.1超声波收发电路由于检测装置工作于井下,井口只为其提供了一路+24V直流电源,各单元电路的工作电源需要依靠DC/DC变换电路获得。控制系统和信号处理系统使用的+5V和±12V电源由LM2596-5.0承担,其主路输出+5V/2A电源供单片机等数字系统使用,将其储能电感改用5026-47μH环形功率电感,并在其上增加两个辅助绕组,经整流、滤波和LM78(79)L12三端稳压IC后产生±12V/0.1A直流电源供信号处理系统使用;超声波发射采用了高压脉冲激励方式,+200~300V激励电压由+24V供电电压经简单的Boost升压电路获得,利用单片机送来的1ms周期、5μs脉宽脉冲信号控制MOSFET开关管实现对超声波发射探头的激励,储能电感选用TDK-NL565050T-822J-PF(8.2mH)贴片电感,NMOS开关管选用2N60即可。超声波激励及电源变换电路如图2所示。经实测,激励脉冲会在接收探头中产生一个较大的谐振频率为5MHz、大约5个周期的串扰信号,为此,接收电路设计了一个对发射激励脉冲延迟6μs、持续30μs的使能控制信号,控制接收放大处理电路仅在使能信号有效期间实现回波信号的放大和输出,使之能够在钢管内壁和外壁反射的一次、二次回波信号到来之前有效地消除激励脉冲串扰的影响,使能控制信号时序关系见图3。检测装置中用于时间差测量的TDC-GP2的典型应用是作为超声波流量计、激光测距仪的时间间隔测量、频率和相位信号分析等高精度测试领域。在这些应用中输入信号一般都较强,经简单处理后即可作为TDC-GP2的START、STOP控制信号使用,而该检测装置的超声波回波信号尤其是多次反射回波信号非常微弱且杂波较大(实测回波信号大约在mV数量级),必须经高增益宽带放大器放大和滤波、检波、整形处理后才能胜任。宽带放大器由AD604承担,可获得6~54dB的增益并可由VGN端电压连续控制,可较好地满足超声波回波信号高速高增益放大的要求[2]。考虑到仅需将回波信号放大处理后形成STOP控制脉冲即可,故电路仅利用可调电阻对2.5V基准电压(由TL431产生)分压获得的VGN电压进行增益设定,但设计电路亦有预留接口可用于接受经单片机和DAC输出的AGC控制电压,实现增益的闭环控制。AD604前级放大电路如图4所示。带通滤波器选用由MAX4104构成,设计中心频率为5MHz,带宽约为1MHz;钳位和检波由AD8036完成,具有卓越的钳位性能和精度高、恢复时间短、非线性范围小、频带宽的特点;检波输出信号的整形处理由MAX9141负责,这是一款具有锁存使能和器件关断功能的高速比较器,具有高速、低功耗、高抗共模能力和满摆幅输入特性等,回波信号经其整形处理后可获得理想的脉冲前沿,并便于与TTL逻辑电平接口,还可以方便地实现回波信号输出的使能控制。信号调理电路如图5所示。
1.2时间差测量电路回波信号时差测量选用了德国ACAM公司的高精度时间间隔测量芯片TDC-GP2。TDC-GP2采用44脚TQFP封装,内含TDC测量单元、16位算术逻辑单元、RLC测量单元及与8位处理器的接口单元和温度补偿单元等主要功能模块,利用内部ALU单元计算出时间间隔,并送入结果寄存器保存。TDC-GP2基于内部的硬件电路测量“传输延时”,以信号通过内部门电路的传输延迟来实现高精度时间间隔测量,测量分辨率可达pS数量级,可以很好满足项目测量的要求。单片机在给超声波传感器提供发射激励脉冲的同时给TDC-GP2提供START信号指令使之开始计时工作,超声波接收头接收到的反射回波信号经放大、处理后作为STOP指令信号,由TDC-GP2完成两次反射波时间间隔的测量。由前述可知,STOP与START信号的时间差大约在6~40μS之间,时差测量分辨率约为0.07μs,为此,设定TDC-GP2工作于“测量模式2”,在该模式下芯片仅使用通道1,可允许4个脉冲输入,实现STOP1与START信号之间的时间差测量,测量范围在60ns~200ms,然后,由TDC-GP2计算出各回波信号间的时间差Δt=tB-tS=tn-tn-1。测量原理如下:在输入START信号指令后,芯片内部测量出该信号前沿与下一时钟上升沿的时差,标记为Fc1;之后,计数器开始工作,得到predivider的工作周期数,并标记为Cc;这时,重新激活芯片内部测量单元,测量出输入的STOP1信号的第一个脉冲(一次反射回波)前沿与下一时钟上升沿的时差,标记为Fc2,将STOP1信号的第二个脉冲(二次反射回波)前沿与下一时钟上升沿的时差标记为Fc3,……;Cal1和Cal2分别表示一个和两个时钟周期。
1.3单片机接口电路实现系统控制和数据处理的单片机选择余地较大,项目结合TI公司中国大学计划选用了美国德州仪器公司生产的MSP43016位单片机,具有16位总线、带FLASH的微处理器和功耗低、可靠性高、抗强电干扰性能好、适应工业级运行环境的特点,很适合于作现场测试设备的控制和数据处理使用[4]。TDC-GP2其与单片机的通信方式为四线串行通信(SPI),利用MSP430的4个P2.x和P4.2I/O口实现GP2的选通、中断和开始、结束使能以及复位等控制功能。MSP430除用来对GP2控制和数据处理外,还可以留出一些资源实现设备其他电路和动作机构的控制使用。单片机接口电路原理和程序流程分别如图8和图9所示。
2结束语
现今装置艺术在国内外的展览中已经占据了很重要的地位,特别是在广告的设计中,已经将装置设计作为了其重要的一种表达形式,受到了设计师地热烈追捧。提到装置艺术与广告设计的结合,那么,马塞尔•杜尚是不得不提的一个人。在1917年的一次展览上,杜尚的作品《泉》引起了全场人的震惊,因为他直接把小便池当作作品放了上去,当时这种展览作品形式几乎为零,这件作品也彻底了奠定了杜尚在艺术界的大师地位,也开创了后来的“装置艺术”。当然,从另外一个角度来看,我们也可以认为杜尚的“泉”宣传了小便池这一特定商品,这其实也代表了当时生活方式的转变,以及科技的进步。2011年11月,法国的一个著名装置艺术大师在湖南长沙打造了一个极具视觉冲击的场面,他用一些透明材质打造出一个真实版的“盗梦空间”。这种艺术品,是在一个大环境中形成,受众置身于这样一个环境中,既是空间,亦是艺术,也形成了人与环境的互动,成为了吸引市民的一个景观标志。当然以上的装置艺术,虽然具有一定的宣传价值,但大多数都偏向于设计师本身的理念的表现,具有浓厚的艺术元素。真正为广告宣传而做的装置艺术,其实更多包含的是社会理念以及正确的价值观的导向。前几年上海街头曾展出过一个名为“末法时代”的广告,其最大的特点就是广告采用了写实化的手法—一个巨大的蜂窝煤正滚向密密麻麻的汽车。不论是巨大的蜂窝煤,还是数量庞大的汽车军团,都给路过的市民留下了深刻的印象,这个广告告诫大家,在这个人类不断发展的社会中,地球的资源却面临枯竭,我们需要爱护我们的地球家园,减少破坏。相比于那种传统的广告形式而言,它没有像教科书一样去灌输人们的思想,让人们被动的去接受,而是以这种装置形式广告的出现,它首先在视觉上就给以受众眼球的冲击,吸引了众多的观众走入场所,同时这种身临其境的感觉也使观众真正思考了所存在的环境,反思自己的生活方式。虽然思考因人而异,但大的方向仍然受到了广告的指引,即呼吁大家要齐心协力共同保护地球、保护环境,这样既达到了广告的宣传效果,也形成了人与广告之间的互动,从内心深处激起人们的共鸣。
二、装置艺术对广告的影响
传统形式的广告大多依赖着电视、报纸、书籍以及路边的灯箱等一些载体进行单一的影视动态或者是平面静态的展示,这种方式由于其大面积高强度的宣传,无疑会得到商家的普遍认可。而装置性广告的出现却打破了这种既定的宣传模式,对传统的广告形成了冲击性的影响,这种影响主要体现在表达方式的巨大转变上。首先,装置艺术促进了广告材料选择的多元化。原来的广告设计多以虚体的形式展现,表现手法单一。但是装置艺术的材料绝大多数都是实体化的物体,特别是其本就可以是一些废旧的东西按照自己独特的方式在一个特定的环境里堆积起来,也可以是设计师打造的一些材料,再使用一些媒材(录影、声音、表演、电脑、网络等)综合来表现,因此广告受众对于商品或者理念的认识更加直接与具体。其次,装置艺术在广告设计中的表达使设计师、作品、受众自然而然地融合在了一起。广告设计通过装置艺术的表现手法,更容易表现设计师的灵感,引起受众心灵的共鸣。感情可以以物为载体进行表现,实物无疑是设计者表现自身情感的最佳通道。同时在装置广告中,物品与人经常进行互动,也容易引起受众的共鸣。例如人们在欣赏装置广告时,不知不觉地成为广告的一部分。因为在装置艺术品中,人们的情感反应和一些行为举止,也都成了作品的元素,只不过一个在表达,一个在反馈,这无疑是一场人性化、感情化的体验。装置艺术产生与人互动的形式不仅存在于表面,其更深层次的目的是与受众的心理沟通,引起情感共鸣,以达到宣传的效果。
三、结语
1.拟定传动方案
为了估计传动装置的总传动比范围,以便选择合适的传动机构和传动方案,可先由已知条件计算其驱动卷筒的转速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为17或25。
2.选择电动机
1)电动机类型和结构形式
按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机。它为卧式封闭结构。
2)电动机容量
(1)卷筒轴的输出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)电动机输出功率Pd
Pd=Pw/t
传动装置的总效率t=t1*t2^2*t3*t4*t5
式中,t1,t2,…为从电动机到卷筒之间的各传动机构和轴承的效率。由表2-4查得:
弹性联轴器1个
t4=0.99;
滚动轴承2对
t2=0.99;
圆柱齿轮闭式1对
t3=0.97;
V带开式传动1幅
t1=0.95;
卷筒轴滑动轴承良好1对
t5=0.98;
则
t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762
故
Pd=Pw/t=3.08/0.8762
(3)电动机额定功率Ped
由第二十章表20-1选取电动机额定功率ped=4KW。
3)电动机的转速
为了便于选择电动事,先推算电动机转速的可选范围。由表2-1查得V带传动常用传动比范围2~4,单级圆柱齿轮传动比范围3~6,
可选电动机的最小转速
Nmin=nw*6=60.0241*6=360.1449r/min
可选电动机的最大转速
Nmin=nw*24=60.0241*24=1440.6r/min
同步转速为960r/min
选定电动机型号为Y132M1-6。
4)电动机的技术数据和外形、安装尺寸
由表20-1、表20-2查出Y132M1-6型电动机的方根技术数据和
外形、安装尺寸,并列表刻录备用。
电机型号额定功率同步转速满载转速电机质量轴径mm
Y132M1-64Kw10009607328
大齿轮数比小齿轮数=101/19=5.3158
3.计算传动装置总传动比和分配各级传动比
1)传动装置总传动比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各级传动比
取V带传动比为
i1=3;
则单级圆柱齿轮减速器比为
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圆柱齿轮和单级圆柱齿轮减速器传动比的常用范围。
4.计算传动装置的运动和动力参数
1)各轴转速
电动机轴为0轴,减速器高速轴为Ⅰ轴,低速轴为Ⅱ轴,各轴转速为
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min
2)各轴输入功率
按机器的输出功率Pd计算各轴输入功率,即
P0=Ped=4kw
轴I的功率
P1=P0*t1=4*0.95=3.8kw
轴II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各轴转矩
T0=9550*P0/n0=9550*4/960=39.7917Nm
T1=9550*P1/n1=9550*3.8/320=113.4063Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878Nm
二、设计带轮
目录
设计计划任务书1
传动方案说明2
电动机的选择3
传动装置的运动和动力参数5
传动件的设计计算6
轴的设计计算8
联轴器的选择10
滚动轴承的选择及计算13
键联接的选择及校核计算14
减速器附件的选择15
与密封16
[关键词]超载红外检测单片机报警锁定
一、引言
针对我国国情,设计了一种客车载乘人员检测系统,当超过规定人数时,便锁定汽车执行机构,使之无法启动。主要任务有:⑴能够手动设置人数上限并对其进行显示。⑵能够实时显示出车厢内乘客的实际人数。⑶光报警信号要实现闪烁功能。⑷声音报警电路可由蜂鸣器完成。
二、系统原理
系统的前端检测部分有两个热释电红外传感器安装于车的前后两个门上前门的传感器用于检测上车人员,后门的传感器用于检测下车人员,车门开时系统及时启动,由于热释电红外传感器可检测到人体发射的红外线且与穿衣多少无关,因此比较可靠。当有人上车时,红外传感器检测上车人数,单片机累加计数并通过LED屏显示;当有人下车时单片机减法计数。由于单片机内预设规定人数,当超过此人数时,单片机控制汽车锁定执行机构使其无法启动,并以LED屏显示数字。
三、系统的硬件构成及功能设计
1.控制单元。控制单元主要完成检测信号处理,并根据处理结果通过LED实时显示人数,当人数超出规定时,产生汽车执行机构的锁定控制信号和报警信号。利用51单片机作为控制单元。因为51是一个低功耗、高性能的8位单片机。
2.热红外检测单元。红外传感器采用对红外光线最敏感的光敏原件以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,经搜索资料确定可使用美国的传感元件———热释电红外传感器KDS9。它能鉴别出运动的生物与其他非生物。下图是其双探测元热释电红外传感器的结构。
使用时,D端接电源正极,G端接电源负极,S端为信号输出。该传感器将两个极性相反、特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰。它利用两个极性相反、大小相等的干扰信号及内部相互抵消的原理来使传感器得到补偿。对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号。制造热释电红外探测元锗二极管材料,它的探测波长最敏感范围为1.5μm左右。为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块干涉滤波片。这种滤波片除了允许某些波长范围的红外辐射通过外,还能将灯光、阳光和其他红外辐射拒之门外。
本系统中,当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,应对热释红外传感器输出的电压信号进行放大。可以运用集成运算放大器来进行两级放大,以使其获得足够的增益。当传感器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限,则系统将输出高电平信号;无异常情况时则输出低电平信号。比较器的上下限电压即参考电压分别设为3.8V和1.2V。将这个高低电平变化的信号上升沿信号作为单片机P3.0的输入信号,设计中采用中断方式来检测。
3.报警部分。当单片机判断出车上人员数量超出规定时,将通过P1.0口输出1kHz的音频信号驱动扬声器,作报警信号,经查阅资料确定电路可使用音频放大集成芯片LM386。
4.锁定部分。锁定部分通过在点火线路中加一继电器控制开关来实现。当单片机判断出车上人员数量超出规定时,将通过P1.5口输出一高电平,继电器工作,从而使点火线路断开,无法启动。
5.乘员数显示部分。由于客车载人数目都在100人以内,所以用两个7段LED已经足够。本设计采用P2和P0口的输出来驱动两个LED。
四、系统软件设计
人员检测系统是一个智能化的系统,它的软件所完成的功能主要包括:
(1)信息处理:即当单片机I/O口接收到脉冲时,单片机做加/减法计数。(2)显示输出:单片机将总人数输出到LED进行显示。(3)控制输出:即当车载人数超出规定时,产生锁定和报警控制信号。主程序、中断子程序流程图如下所示。
五、结束语
该系统在精度和灵敏度上都能满足实际的需求,解决了通过加大检测力度、行政干预等手段检查客车超载问题带来的不便,方便了交警,保障了行车安全。如果进一步扩充,可以增加语音提示,发出“欢迎光临”、“车已超载”等提示;可以扩展日期和时钟模块,记录每日的载客量和发车时间;还可加入键盘输入模块,随时输入要显示的提示信息;甚至可以扩展和上位机的通信模块,将载客及出发时间保存。但该系统要求乘客在乘车时必须从前门上后门下,当不满足此要求时就会造成整个系统结果与实际不符,因此,在此问题上有待改进。
参考文献:
[1]胡汉才.单片机原理及接口技术(第2版).北京:清华大学出版社,2006.
关键词:燃气直热;微波辅助;干燥装置
引言
我国是世界上最大的发展中国家,国民经济快速发展,人民生活水平不断提高,与此同时,干燥技术的应用在市场需求的刺激下也出现了迅猛增长的势头。我国的干燥技术应用经历了引进、消化吸收及自制等阶段,是世界上拥有干燥设备制造厂数量最多的国家,但我国大部分的农产品仍没有条件获得先进干燥技术的处理。据有关统计,由于得不到及时的干燥处理,我国平常年景损失的粮食达50亿Kg。至于干燥技术对粮食产品外形和口味的影响尚无力顾及,今后与进口粮食产品全面竞争的局面迟早要出现,届时,这方面的缺陷将削弱我国产品的竞争力。
干燥能源通常使用煤、电、油、气等,而且随着世界煤炭、石油等能源的枯竭,使用成本愈来愈高,太阳能、微波能、远红外、生物质能等新能源的开发及应用愈发受到重视。本文介绍的是利用天然气燃烧产生的气体作为热介质,利用微波进行辅助加热的一种组合干燥机,具有绿色、无污染,温度易控制,热利用率高的特点,另外微波还具有杀菌的作用。
就北方的玉米干燥而言,降速干燥阶段时间占整个干燥时间的2/3,蒸发掉的水分却不足全部水分的1/3,本发明设想在传统干燥的恒速干燥最后阶段,在进入降速干燥之前,加入微波辅助加热,加快内部水分向外部扩散的速率,这样可以大大缩短降速干燥阶段时间,也使整个干燥时间缩短,从而达到高效节能的目的。
一、总体结构
烘干机由四部分组成:带式干燥机及配风系统、天然气燃烧系统、微波辅助加热系统、控制系统。
带式干燥机由机箱、带传动系统组成,带速可无级调节。配风系统包括进、出风管、循环风机、排潮风机及控风门。
微波辅助加热系统包括微波加热腔、微波源、微波源外罩及进、出料微波抑制器。
控制系统控制传送带开/停及变频调速;循环风机、排潮风机开/停;微波源分组开启/关闭及状态显示;料温显示及报警;风温显示及报警。
二、烘干机主要参数的确定
通过干燥过程的物料衡算和热量衡算,确定主要参数,包括计算水分蒸发量、空气耗量、天然气用量及微波能耗。
在干燥过程中,新鲜空气(其状态为环境温度t0,湿度H0,热焓I0,干空气量L)进入空气加热器,加热后(其状态为t1,H1=H0,I1,L)进入干燥器,在加热器中物料燥,由含水率m1降至m2,物料温度由tm1升至tm2后排出干燥器;而干燥空气温度下降、湿度增加后排出干燥器(其状态为t2,H2,I2,L)。
(1)原料玉米的质量流量G1(kg/h):根据要求G1=1000kg/h。
(2)产品玉米的质量流量G2:G2=G1*(1-m1)/(1-m2)
式中:G2为产品玉米的质量流量,kg/h;G1为原料玉米的质量流量,kg/h;m1为原料玉米的湿基水分,28%;m2为产品玉米的湿基水分,14%。带入数值,计算得到:G2=837kg/h。
(3)玉米中去除水分的质量流量mw:每小时去除的水分质量流量mw,由如下公式计算:mw=G1*(m1-m2)/(1-m2)
式中:mw为每小时去除的水分质量流量,kg/h;带入各值,计算得到:mw=163kg/h
(4)干燥介质进入干燥室时的湿含量H1:因H1=H0,当温度为t0=-20℃,相对湿度为35%,查表得H1=0.001
(5)干燥介质离开干燥室时的湿含量H2:温度为t2=35℃,相对湿度为80%,查表得H2=0.029
(6)干燥介质湿比容υ(m3/Kg):
υ=(0.773+1.244*H1)(273+t1)/273=1.002(m3/Kg)式中:t1=70℃
(7)干燥介质流量L(Kg/h):L=mw/(H2-H1)=5821.4(Kg/h)(8)干燥介质体积流量V(m3/h):V=L*υ=5833(m3/h)
(9)干燥介质离开干燥室时的焓值I2:I2=1.01t2+H2(2501+1.86t2)=35.35+0.029*2566.1=109.8(KJ/Kg)
(10)干燥介质进入加热室时的焓值I0:I0=1.01t0+H1(2501+1.86t0)=-20.2+0.01*(2501-37.2)=4.44(KJ/Kg)式中:t0=-20℃
(11)加热器加入的热量QH(KJ/h):系统输入热量:1)湿物料G1带入的热量:因为G1=G2+mw,所以湿物料G1带入的热量为G2Cmtm1+mwCtm12)空气带入的热量LI03)加热器加入的热量QH
系统输出热量:1)产品G2带走的热量:G2Cmtm22)废气带走的热量:LI23)干燥器散热损失QL取QL=10%QH
综合以上:G2Cmtm1+mwCwtm1+LI0+QH=G2Cmtm2+LI2+10%QH
得:90%QH=G2Cm(tm2-tm1)+L(I2-I0)-mwCwtm1
式中:Cw为水的比热容,4.187KJ/(Kg·℃);tm1为原料玉米的温度,-20℃;tm2为产品玉米的温度,60℃;Cm为产品玉米的比热,2.01KJ/(Kg·℃)
最后QH=846202(KJ/h)=202150Kcal/h
(12)天然气燃烧热为8000Kcal/m3,则天然气用量为25.3m3/h。
(13)微波功率P(Kw):假设降速干燥开始时,玉米中应去除的水分还剩1/3(54Kg),此时的质量流量(包含水分在内)为Mj,含水率wj=(54+1000×14%)/Mj=21%,设经微波加热后,含水率为20%,粮食温度由T1(60℃)变为T2(70℃),加热效率η1(80%),微波转换效率η2(70%),在标准大气压力下,水的气化热539Kcal/Kg,产品干燥时,所需要的热量为Q,可得:
Mj=1000×(1-28%)+54+1000×14%=914Kg/h=15.23Kg/min
Q=Mj×〔W1(T2-T1)×1+C(1-W1)(T2-T1)+539(W1-W2)〕=171.8(Kcal/min)
则微波功率P=0.07Q/η1η2=21(Kw)
三、总结
玉米是我国主要的粮食资源,研制烘干玉米的关键技术和装备,已成为节能减排、建设玉米绿色供应链的关键,且众多生产领域还没有采用先进的干燥技术和装备,更有巨大的市场还有待于开发。使用可燃气,主要成份为甲烷,燃烧生成二氧化碳和水,属于清洁能源,采用微波干燥,速度快、加热均匀,同时具有杀菌、减少污染的作用,结合热风干燥,能达到节能的目的,目前在粮食烘干领域还未见应用,但经广大科技人员的研究与推广,我国的粮食干燥技术及装备必将取得更多成果。
参考文献:
[1]金国淼等.干燥设备[M],化学工业出版社,2002.
[2]郝立群,白岩,董梅.玉米干燥中的能耗[J].粮食加工,2005,(2).
关键词:植入式装置遥测编程器脉冲位置调制
植入式装置(例如植入式心脏起搏器、神经电刺激器等)的体内植入部分和体外程控器之间进行遥测时,工作距离不超过40mm,一般选用电磁耦合方式实现数据的传送。由于体内植入装置的能量供应受限制,为了延长其使用寿命,需要系统发送数据时的功耗尽量低。据此,本文设计了一种采用脉冲位置调制(PPM)的植入式装置遥测技术,包括控制单元、耦合单元、发射预处理单元和接收预处理单元。在发送数据时平均功耗很低,且电路简单可靠,可以减小装置的体积。
1硬件设计思路
硬件电路是采用PPM方式进行遥测的物理基础,由于当前的植入式装置一般都具有双向通信功能。因此本文对体内植入部分和体外程控器采用相同的遥测电路结构,如图1所示。
(1)控制单元
由于体内植入部分对功耗、工作电压、装置体积及电路复杂度等因素的严格要求,所以采用静态功耗少、电压低、功能多、体积小的单片机进行控制。采用软件实现数据的脉冲位置调制和解调过程。
(2)数据发射单元
来自控制单元的数据信号,驱动能力很弱,无法直接驱动耦合回路将数据发射出去。采用MOS开关作为中间级,用来自控制单元的数据信号控制MOS开关的开启和闭合,驱动耦合单元发射瞬间的高压脉冲。
(3)数据接收单元
接收端接收到的信号由发射端天线的反冲电压耦合到接收端天线上形成,具有衰减的振荡拖尾。通过接收单元,把有衰减振荡的脉冲波形变换成标准的方波信号,使控制单元能够直接处理。
(4)耦合单元
脉冲信号的发射和接收效果与耦合单元性能有关,本文采用优化的空心短圆柱线圈作为天线。
2工作原理
(1)模式切换
如图1所示,开关P是P沟道MOSFET,其栅极G由MCU控制。当栅极G被设置为低电平时,开关P导通,此时电路工作在数据脉冲的发射模式;当栅极G被设置为高电平时,开关P关断,这时电路工作在数据脉冲的接收模式。
(2)脉冲的发射
不同于电路比较复杂的谐振回路发射信号,本文中数据信号的发射基于电感升压原理:当发送端的开关N(N沟道MOSFET)导通时,电流流经线圈L1,电磁能量储存在线圈L1中;当N关断时,回路截止,线圈L1感应出瞬间的高压窄脉冲,紧接着是衰减的振荡拖尾信号,其中高压窄脉冲被用作PPM信号。接收端通过电磁耦合方式接收信号。
开关N关断时线圈上产生自感电动势(即反冲电压)ε=-L,而dt是N由导通到闭合的转换时间,N确定则dt为定值,同时线圈固定则L也为定值,因此当N导通时电流I越大则N关断瞬间产生的反冲电压就越大。另一方面,要求脉冲发射时能耗尽量少,因此N的导通时间设置为使I接近饱和。为了便于观察,在回路中串接阻值小的电阻R2,如图1所示。当N导通时,根据R2上测得的电压波形,就可以方便地看到I是否接近饱和,从而优化N的导通时间。
(3)脉冲的接收
耦合到接收端线圈L1的脉冲信号经过隔直电容C4,直流分量被滤掉,有用的信号(频率)分量传送到脉冲判别和脉宽延展电路。
运放A1和电阻R3、R4、R5、R6、R7,以及电容C2、C3组成脉冲判别和脉宽延展电路:其中C2起滤波作用,使接收到的脉冲信号振荡减弱。可变电阻R7用来调节门限。运放A1平时输出为高电平,当A1反相输入端接收到脉冲幅度大于门限时,输出反转,变为低电平。电容C3起正反馈作用,延展负脉冲宽度,以使单片机能够识别处理。延展后的负脉冲作为外部中断触发单片机,请求响应。
(4)电源的稳定
如图1所示,VDD是装置的直流电源电压。为了能在线圈L1发射数据信号时提供足够能量,并且不使电源受到数据发射时电感上感应电动势的波动影响,由电阻R1和电容C1组成去耦电路。数据发射周期T必须大于时间常数τ1=R1·C1,一般要求满足T>3~5)·τ1。
在做植入式装置遥测实验时,通过MCU控制电阻R8与发光二极管LED组成的指示电路,可以直观地了解通信状况。
3软件设计
本文研究植入式装置的数据遥测,综合考虑信息传输速率和平均功率消耗等因素,采用4-PPM方式。即每两位二进制数据信号调制成一个4-PPM(四进制)信号。数据的调制和解调,以及4-PPM信号以帧格式发送和接收都由软件控制。
定义传输一个4-PPM信号的基本时间单位为一帧(frame),如图2所示,A~F构成一帧。把一帧的持续时间平均分成8份,每一小份时间段代表一个时隙(slot),则一帧由slot0~slot7组成。每一帧里的8个时隙组成4个固定的时区,在每一个时区内包括一定的变化脉冲位置:
(1)第一个固定时区由时隙slot0和slot1组成,如图2中的A、B。在每一帧里的预定脉冲位置产生一个帧同步信号,从而使接收端确定这是一帧的开始,使帧同步。帧同步信号位于每一帧的第一个固定时区内,而且是唯一的同步信号。如图2所示,帧起始由脉冲P1确定,它所在的时隙则定义为slot0,帧同步脉冲P2位于帧的第一个固定时区内的固定位置--时隙slot1。当接收端在接收到P1之后(设为slot0),若接着在slot1接收到P2,则可以确定正在接收一帧,即发送端和接收端之间实现帧同步。
(2)第二个固定时区由时隙slot2组成,如图2中C。这个时区是一个保护带,因为保护带的存在,使帧同步脉冲和数据脉冲在一起不会被当作新的帧同步脉冲,从而唯一地确定一帧,防止数据交迭。
(3)第三个固定时区由时隙slot3~slot6组成,图2中的C~E区间。在这个时区内的脉冲位置产生一个数据量值信号,表示被发送信息的数值,4个时隙唯一地表示两位二进制数据信息:slot3表示“00”,slot4表示“01”,slot5表示“10”,slot6表示“11”。例如,图2中的数据脉冲P3,它位于时隙slot4,因此表示二进制数据是“01”。