时间:2024-03-29 14:48:55
序论:在您撰写免疫学的进展时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
【关键词】研究;应用;免疫学检验;进展
伴随着科技的发展和医学的进步,免疫学检验技术有了突飞猛进的发展。从单一的免疫诊断技术发展为微量化、多基因和单细胞技术。而一些继发性和原发性免疫缺陷及恶性肿瘤的临床诊断,往往要求更加精确的免疫学检验技术,还能对临床治疗的有效性进行定量评价。
1免疫学检验技术的研究进展
1.1荧光素标记抗体技术
1.1.1流式细胞免疫荧光分析技术这是一种新型的血清试验方法,它是在免疫荧光基础上建立起来的,对抗体利用荧光进行染色,并在此基础上对所需信息进行获取,进而研制而成的流式细胞仪。其特征是拥有电子计算机技术和激光技术,主要是用于分析DNA含量,可在同一试管中,对多种靶物质的潜在特征进行检测。目前这种技术尽管还没有应用于临床上,但却受到许多临床检验学者的关注。
1.1.2间接免疫荧光技术主要是检测呼吸道病原体抗体、抗平滑肌抗体和抗病原体,可使自动化程度和标准化检测提高,并使手工操作的误差降低。这是一种相对成熟的技术,可用于商品的开发。
1.2酶标记免疫检验技术
1.2.1酶联免疫吸附试验技术在检测酶联免疫技术上,从理论上分析,相应的抗体或者是某一抗原纯品都可以进行应用,所以在该技术的检测上,抗体系统或者是可融性抗体都可以采纳。这种技术是以免疫过氧化物为基础,有较强的特异性、较高的敏感性,便于观察、操作简单,已经在临床上得到了广泛的应用,利于进行大规模的检查。
1.2.2酶联免疫斑点技术这是一种分析技术,应用于对B细胞分泌免疫球蛋白的测定,是进一步衍伸和发展了定量酶联免疫吸附试验技术。微孔内进入待检测样本后进行培养,在特异性抗原的作用下,对B细胞或者是记忆型T细胞进行活化,产生了IG或者是CK,清洗细胞之后,将第二抗体加入,IG或CK与抗体结合之后,在将酶生物素加入,发生反应,而形成大小不一的圆形着色斑点。此技术即可用于各类CK的T细胞的分泌,还可用于抗体B细胞的分泌,这种技术也是检测T细胞功能的标准技术,其检测灵敏度相当高。
1.3新型标记免疫检验技术
1.3.1核酸标记免疫检验技术其原理是转录翻译或者是扩增核酸。在极短的时间内,通过聚合酶链反应,按照几何数在扩增,最终达到数百万倍,这就是扩增。而转录翻译是通过抗体DNA发生抗原反应后,测定转录翻译成的酶。灵敏性强是这两种检测方法的共同特征,目前,此种方法仍旧用于研究阶段。
1.3.2量子点标记免疫检验技术在传统的标记免疫分析技术中,有较低的酶免疫分析灵敏度,同时有很大的污染存在于放射免疫分析中,而荧光免疫分析和发光免疫分析都有着较短的发光时间,很容易发生淬灭。而在20世纪70年代,科学家们就开始广泛关注良好的光电性能,并开始初步应用标记免疫分析,其效果也非常令人满意。量子由于有很小的尺寸,在受到刺激时,会发生荧光,所以它实际上是起到了探针的作用。在早期诊断疾病、细胞成像、测定生物多组分和免疫示踪定位时,其应用价值非常广泛。
2其他免疫检验技术
2.1微阵列免疫芯片技术这是一种小分子抗原分析平台,具有高效的特征,是近年来刚刚出现的,它可以对复杂样品中含量极低的目标物质进行快速的定量检测。同时,还可对生物样品中全部蛋白质含量的变化情况进行检测。其优点是能够进行高通量的平行检验与分析,可使样本或药品的用量降低。
2.2液态芯片技术是新一代生物芯片技术,在20世纪70年代美国Luminex公司研制,其检测平台是流式细胞技术,其载体是带编码的微球体,可用于大规模的测定蛋白质和核酸。还可用于检测多种指标,包括传染病、神经―内分泌等,可用于测试任何使用微量分析的系统。
3免疫学检验技术的发展趋势
科学技术的发展和医学的进步,要求能够准确分析从特定部位取得的微量样本。随着微纳电子学及分子生物学的发展,在科研上免疫学检验技术也有了质的飞跃,在此趋势下,将不断应用各种更为敏感的新的分析方法,使免疫学检验技术朝着更新、更高的方向发展。
参考文献
[1]张静波,吴玉章.MHC/肽四聚体复合物技术及其在T细胞研究中的应用[J].中国免疫学杂志,2004,20(9):654-657.
[2]虞伟,武建国.ELIspot技术及其在生物医学研究中的应用[J].临床检验杂志,2006,24(6):476-477,479.
[3]虞伟,孙永康,顾宁,等.蛋白质与抗体微阵列及其在生物医学研究中的应用[J].生物化学与生物物理进展,2002,29(3):491-494.
关键词:小儿哮喘;免疫学;发病机制
小儿哮喘是一种表现反复发作性咳嗽,喘鸣和呼吸困难,并伴有气道高反应性的可逆性、梗阻性呼吸道疾病,会严重危害儿童的身体健康,异常免疫反应在发病中起着重要作用,其主要病理过程为气道黏膜水肿,嗜酸性粒细胞、淋巴细胞和中性粒细胞浸润气道,导致内分泌物增多[1-2]。由于气道有炎症,使气道高反应性,细小支气管管腔狭窄甚至闭塞,血清和气道分泌物中总免疫球蛋白(IgE)和过敏原特异性IgE增高,该病理和病理生理改变的本质是异常的免疫反应。
1、遗传学背景
哮喘为多基因遗传病:其遗传度高达77%,但环境因素仅占23%。通过结合DNA芯片技术与临床表型关联的分析得出:哮喘候选基因的筛选已被越来越多的人所关注。目前已发现11q与过敏体质(atopy)有关,其控制总IgE和气道高反应性的基因位点位于染色体5q31成簇的细胞因子(IL-4,IL-13和IL-4受体)中。这些基因的突变导致细胞内信息传递因子信息传感和转化活化剂-6(STAT6)活化[4],促使atopy和哮喘的发生。而且β2受体的突变与哮喘有紧密的关系,位于14q的T细胞抗原受体(TCR)和特异性IgE反应连锁。由此可见,哮喘的发病和atopy的形成均具有遗传背景.。然而近几十年,哮喘的发病率却在成倍的上升,这说明不仅仅是候选基因发生突变而导致的,主要原因是环境因素变化。此外,从已知的哮喘候选基因来看,均属免疫因子的基因位点,这些基因多态性的表型(临床表现)必然关系到免疫学改变[3]。
2、TH1/TH2 细胞功能失调
TH1 细胞的主要通过分泌IL-2和IFN- γ等细胞因子对抗细胞内细菌及原虫的免疫反应,对诱发器官特异性自身免疫病、器官移植排斥反应以及抗感染色疫中起面议调节作用,而TH2细胞主要分泌IL-4、IL-5、IL-6、IL-10、IL-13,能够在诱发过敏反应中调节体液免疫反应,并辅助B细胞合成转化免疫球蛋白,其中,分泌出的IL-4能够促进IgE的合成,IL-5和IL-8能够延长嗜酸性粒细胞在气道内的存活时间,所以,形成过敏体质的基础便是TH2的功能亢进[4]。
在一般情况下,TH1/ TH2细胞处于恒定状态,二者功能发生变化时又会产生相互影响,例如当哮喘患者TH1细胞功能下降时,TH2细胞的功能就反而增大,导致生成大量炎症因子,IFN- γ水平降低,IL-4、IL-5水平升高,说明患者体内TH1/ TH2功能失调,当然,TH1细胞和TH2细胞的功能并不是相互独立的,TH1/ TH2细胞起着相互抑制的作用,当TH1内的细胞因子IFN- γ拮抗TH2的IL-4和IL-10时,会导致TH2细胞的活性减弱,相反,当TH2细胞内的细胞因子IL-4和IL-10拮抗IL-2和IFN- γ时,TH1细胞的活性就会减弱。总免疫球蛋白会促进肥大细胞和嗜酸粒形细胞分化,进而形成以IgE为特征的速发型变态反应,即迟发型哮喘反应。
从最近的小儿哮喘发病机制的研究结果:诸多哮喘患儿的体内并不存在TH1细胞功能低下或者TH2细胞功能亢进的现象,由此表明,TH1/ TH2细胞失衡并不是导致小儿哮喘发病的唯一因素,还尚有其他亟待可知的机制参与。
3、TH2细胞引起免疫反应
1、嗜酸性粒细胞(eosinophil) 嗜酸性粒细胞属于白细胞,其具有粗大的嗜酸性颗粒,内含有过氧化物酶和酸性磷酸酶,气道全层会在TH2细胞内的细胞因子IL-5和 IL-13的诱导下聚集大量嗜酸性粒细胞,从而释放出炎症介质,主要有嗜酸细胞神经毒蛋白、胶原酶、NO、以及血小板激活因子等。
2、免疫球蛋白(IgE) IgE是人体的一种抗体,存在于血中,可以引起I型超敏反应,TH2细胞内的细胞因子IL-4能够促成lgE的合成,它与肥大细胞和嗜碱性粒细胞结合释放出炎性介质,从而产生免疫功能。
3、细胞黏附分子(CAM) 细胞黏附分子能够通过介导白细胞与内皮细胞及其他气道结构细胞的相互作用来调控白细胞在局部的聚集与归巢等活动[2],由于TH2内细胞因子IL-6以及肿瘤坏死因子的刺激,导致炎症细胞大量在气道聚集。同时,血管细胞黏附因子、细胞间黏附分子、分泌因子都会到气道参与聚集。
4、趋化因子(chemokines) 趋化因子在炎症反应中有着不可替代的作用,它能够吸引白细胞移行到感染部位的一些低分子量趋化因子(多为8-10KD),同样,嗜酸细胞活化趋化因子也会参与到炎症细胞在气道聚集。
5、内皮素(Ets) 内皮素存在于血管内皮以及各种组织和细胞中,是调节心血管功能的重要因子,能够维持基础血管张力与心血管系统稳态。其合成主要取决于巨噬细胞原炎症因子和肿瘤坏死因子-α的调控。内皮素不仅能够有效收缩支气管平滑肌,而且还能促进黏膜下腺体的分泌以及促使平滑肌合成纤维细胞的增殖。
4、树突状细胞(DC)
树突状细胞是机体功能最强的专职抗原递呈细胞,能高效地摄取、处理和递呈抗原,自身有很强的免疫刺激能力,对小儿哮喘的发病机制起着至关重要的作用。其通常少量分布于与外部接触的皮肤部位,DC主要分为髓样DC(DCl)和淋巴样DC(DC2),DCl分泌的IL-12和IL-18促使TH0细胞分化为TH1细胞,由于IL-4的刺激,TH0渐渐向TH2发育,同时IFN- γ的正反馈刺激DCl 使TH1分泌更多的IL-12,因而导致DCl功能不足,TH1/ TH2细胞功能失衡,很大程度上,会引起人的过敏反应[5]。
DC有成熟状态和未成熟状态,在人体内, DC大部分是非成熟状态,未成熟DC有极强的抗原吞噬能力,在摄取抗原或受到外界因素刺激时就会分化为成熟DC,而成熟DC能有效激活初始型T细胞,近年来,人们越来越重视微环境因素对不成熟DC发育可能造成的影响,比如细胞因子。
最近研究表明又出现了低3种表型的DC[6],即低分化DC,其吞噬功能很强,但分泌细胞因子的能力较弱,它与DC1、DC2不同的是,在提呈抗原的过程中并不会激活TH0细胞。由此看出,树突状细胞对小儿哮喘的发病具有关键作用。
5、免疫耐受现象
免疫耐受是指免疫活性细胞接触抗原性物质时所表现的一种特异性的无应答状态,如在抗原或过敏原刺激下,树突状细胞内不成熟的DC能够抑制气道炎症反应。但准确机制尚不明,导致不成熟DC诱导T细胞的无能化,可能是由于它们之间缺少共刺激分子。
6、哮喘的发作与因素
哮喘发作的前兆便是出现过敏体质,与TH2细胞不同,T细胞主要产生IL-10来抑制TH1细胞和TH2细胞,而TH3细胞主要分泌TGF-β来抑制炎症的反应,通过诱导共刺激分子,T细胞、TH3细胞由于与其配体的相互连接而被活化 ,从而导致细胞功能缺乏,免疫耐受状态被破坏,便出现了过敏体质。
由于近年来哮喘发病率急速上升[7],随之便出现了各种导致因素,感染便是其中之一,感染的抗哮喘机制是极其复杂的,通过toll样受体细菌会促使TH1的发育,由于缺乏经常性呼吸道感染的原因,导致TH1不能完全发育,使新生儿时期,TH2细胞的功能亢进发展迅速,便形成了过敏体质。已有医学证明鼻病毒、腺病毒、衣原体或支原体呼吸道感染也会导致哮喘的发作,但是也并不是所有的呼吸道感染都能诱发哮喘的发作。是否导致哮喘的发作取决于病原体的抗原成分,成分不同,可能诱发哮喘也可能抗哮喘,哮喘的发作与感染机会并没有直接的关系。
7、哮喘的免疫学治疗
随着医学技术的不断更新,目前已研究出许多控制哮喘发作的方法,如气道吸入糖皮质激素、抗原特异性免疫疗法以及LgE单克隆抗体治疗等疗法,但这些并不能从根本上治疗哮喘,,如糖皮质激素,它只能控制哮喘症状,必须持续用药来预防复发。所以深入研哮喘发病机制探索出一种新的能够抑制哮喘的发作的疗法是有意义的。
由于哮喘发作的机制是免疫耐受被打破,所以想要研究出预防和治疗哮喘的有效方法就需重建免疫耐受,增强免疫耐受的方法如下:
7.1益生态学治疗:为激活黏膜免疫系统NOD2的活性来预防过敏性疾病的发生,可口服乳酸杆菌。
7.2抗原特异性免疫治疗:通过反复接触少量过敏原来调节机体的免疫应答,使机体产生耐受性,当机体再次接触过敏原时,便可减少介质释放,减轻气道炎症,从而降低气道反应性。
7.3脱敏治疗:脱敏治疗有口服过敏原和皮下注射过敏原,为提高其特异性免疫耐受,可通过诱导IL-10来抑制IL-4的产生。皮下注射过敏原已广泛应用于小儿哮喘的临床。
参考文献:
[1] 杨锡强.小儿哮喘的免疫学发病机制及其对策[J].中国当代儿科杂志,2010,3(5):487-490.
[2] Zora, J.E.,Sarnat, S.E.,Raysoni, A.U. et al.Associations between urban air pollution and pediatric asthma control in El Paso, Texas[J].Science of the Total Environment,2013,448:56-65.
[3] 郑春盛,林青,林丽婷等.小儿哮喘与白三烯关系的研究 (附109例分析)[J].福建医药杂志,2009,25(3):167-169.
[4] 李忠东.小儿哮喘的免疫学发病机制及其对策[J].中国保健营养(中旬刊),2013,21(11):29-29.
[5] Saglani,S.,Lui,S.,Ullmann,N. et al.IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma[J].The Journal of Allergy and Clinical Immunology,2013,132(3):676-685.
关键词:鸭坦布苏病毒;病原学;天然免疫;获得性免疫
中图分类号:S858.32 文献标识码:B 文章编号:1007-273X(2016)10-0015-02
鸭坦布苏病毒是一种近年来在我国发现的主要危害蛋鸭、种鸭的新发病毒,属于黄病毒科黄病毒属中蚊媒病毒恩塔亚病毒群的坦布苏病毒。该病毒主要侵害鸭的生殖系统、导致种蛋鸭的采食量和产蛋量急剧下降[1]。鉴于该属病毒大部分为虫媒传播病毒,常见的有登革热病毒、日本脑炎病毒等,并且多为人畜共患病,因此对鸭坦布苏病毒进行深入研究对公共安全卫生有著重要的意义。
本文就近年来鸭坦布苏病毒的病原学、天然免疫以及获得性免疫研究等方面最新研究作一简要概述,以期为该病的预防及控制提供参考。
1 病原学的研究
鸭坦布苏病毒具有黄病毒典型的基因组特征:有囊膜糖蛋白,病毒颗粒呈球形,单股正链RNA病毒,有包膜颗粒,纤突在表面。病毒的基因组全长约为11 kb,只含有一个开放阅读框(Open Reading Frame,ORF),编码一个长度为3 410个氨基酸的多聚蛋白,该多聚蛋白由3个结构蛋白和7个非结构蛋白组成,5′端非编码区有I型m7GpppNp帽子结构,3′端无poly(A)结构[2,3]。鸭坦布苏病毒基因组的编码顺序为依次为5′UTR、C、PrM、E、NS1、NS2A、NS2B、NS3、NS4A、NS4B、NS5、3′UTR,其非编码区在病毒的复制、翻译、致病性等方面扮演着重要的角色[4]。
经研究表明与免疫相关的蛋白主要是结构蛋白E蛋白和非结构蛋白NS1。E蛋白是病毒的包膜蛋白,含有病毒抗原决定簇,与宿主的免疫应答作用密切相关,引起保护性免疫反应,能诱导机体产生中和抗体[5,6]。在病毒致病过程中也起关键性作用,该蛋白上一些重要的氨基酸的替代即可引起神经毒力和侵袭力的丧失。E基因还和病毒吸附、侵入宿主细胞有关[7,8]。非结构蛋白NS1是黄病毒中最大的蛋白结构,是病毒感染过程中所产生的主要免疫原,在病毒复制及病毒与细胞相互作用中起着重要的作用,是一种与膜功能相关的分泌型糖蛋白,表达于感染细胞的表面,参与病毒复制的早期阶段[9],有研究表明,主动免疫NS1蛋白(或者基因)和被动免疫NS1蛋白的特异性抗体,都能对接受致死剂量的黄病毒攻击的实验动物产生保护性免疫,而不产生抗体依赖性增强作用,因此它可作为亚单位疫苗研究的绝好材料[10-12]。
2 鸭坦布苏病毒免疫学研究
先天性免疫(天然免疫)和获得性免疫是机体防御病原微生物的两大机制,机体的先天性免疫系统在抵抗病毒的感染中发挥着重要作用。当宿主受到病毒感染,其通过模式识别受体(PRRs)识别病原相关分子模式,激活宿主的先天性免疫反应,从而诱导产生干扰素,促炎症细胞因子等一系列的抗病毒因子。先天性免疫在进化过程中产生了一套相应的天然免疫识别分子,也称模式识别受体[13]。根据模式识别受体功能和定位的不同,可将其大致分为体液中的游离受体、细胞表面吞噬受体、细胞膜信号转导受体、细胞内信号转导受体四类[14]。与鸭坦布苏病毒相关的研究主要是细胞膜信号转导受体和细胞内信号转导受体,Toll样受体(Toll-like receptors,TLRs)是最具有代表性的细胞膜信号转导受体,目前已经发现的人类TLRs家族有11个成员[13],该家族成员均属于I型跨膜蛋白,具有胞外区、跨膜段和胞内区,其中TLR2,TLR3,TLR4,TLR7,TLR8和TLR9能够识别病毒。细胞内信号转导受体存在于细胞质中,通过识别胞质内的病原体及其产物来激活转录因子,从而产生相应的抗病毒免疫反应,其主要的成员有RIG-I样受体、NOD样受体以及DNA受体家族[15]。
2.1 鸭感染坦布苏病毒的天然免疫应答研究
近些年来,自鸭坦布苏病毒暴发以来,很多科研单位开展了鸭天然免疫因子及信号通路的研究。Chen等[16]通过将禽源坦布苏病毒毒株CJD05株接种鸡源细胞CEF、人源细胞系293T以及SPF雏鸡进行体内体外试验,研究表明坦布苏病毒通过MDA5和TLR3依赖的信号通路激发宿主的天然免疫应答;Fu等[17]通过免疫荧光定量PCR方法检测了鸭感染坦布苏病毒后,肝、脾、肺、肾、胸腺、法氏囊、卵巢等七个组织中与天然免疫应答相关的四个因子的表达情况,结果表明,雌麻鸭在坦布苏病毒感染后24 h,受体RIG-I和MDA5转录因子的表达量达到最高峰值,两个干扰素INF-α和INF-γ的表达水平也呈上调趋势,但在病毒感染的时间相关性上,表现得与受体RIG-I和MDA5上调表达不同;相对而言,Li等[18]也利用荧光定量PCR方法,更为全面的研究了鸭感染坦布苏病毒后的免疫应答和病毒在宿主体内的分布情况, 研究结果表明,鸭坦布苏病毒在感染早期复制很快,在感染1 d后脾脏中的含毒量最高,跟宿主天然免疫相关的受体Rig-I、Mda5和TLR3,促炎因子IL-1β、IL-2、IL-6、Cxcl8,以及抗病毒蛋白Mx、Oas等在坦布苏病毒感染的早期均上调表达;另外对与宿主特异性免疫相关的MHC-I和MHC-II也进行了检测,MHC-I在脑和脾脏中均上调表达,MHC-II则不同,仅在脑中上调表达,在脾脏中下调表达;同时干扰素INF-α、INF-β、INF-γ在脾脏中也有不同程度的上调表达,但是在脑中的表达则存在着差异;研究表明,鸭坦布苏病毒在感染的早期在各组织脏器中快速复制,激活了宿主的天然免疫,但是过表达的细胞因子同时也损害了宿主机体本身。
2.2 鸭坦布苏病毒病的获得性免疫研究
机体抗病毒感染免疫包括天然免疫和获得性免疫,获得性免疫即特异性免疫,包括体液免疫和细胞免疫。该病毒为新发病毒,获得性免疫的分子机制还在起步阶段,本文主要是指鸭坦布苏病毒的疫苗研究进展,该病在2010年首次爆发流行时,由于商品化疫苗的缺乏,针对该病没有有效的免疫预防措施,很多规模化养鸭场都使用自家灭活苗进行免疫防治,一定程度上缓解了该病的流行。近些年来对该病的基因工程疫苗方面取得了一定的进展,Zou等[19]以鸭瘟病毒为载体插入病毒主要表面抗原E蛋白,研制了一株抗鸭瘟病毒及鸭坦布苏病毒重组疫苗。Chen等[20]报道了利用反向遗传技术构建了以鸭瘟病毒为载体表达鸭坦布苏病毒截短分泌型E蛋白及PrM蛋白的重组二价弱毒疫苗候选株,此外,鸭坦布苏病毒的组织苗研究取得了较大的进展,目前已有两家单位成功申报了新兽药证书,一个是中国农科院上海兽医研究所李泽君等[21]研究团队将鸭坦布苏病毒强毒株(FX2010株)在鸡胚成纤维细胞上连续传代培养180代,获得致弱毒株并利用该致弱毒株制备的鸭坦布苏病毒活疫苗,研究显示该弱毒活疫苗可对鸭子提供较高的保护率;另一家是北京市农林科学院刘月焕研发团队,研制了鸭坦布苏病毒灭活疫苗。鸭坦布苏病毒活疫苗和灭活疫苗目前均已转让给公司进行开发上市。
3 讨论
迄今为止,关于鸭坦布苏病毒的发病机理和免疫应答尚不明确,仍有很多问题需要进一步深入研究,天然免疫是机体抵抗病原微生物入侵的第一道防线,同时也是激活获得性免疫的重要前提和基础。很多生物如人、猪、鼠、原鸡等天然免疫系统已经研究的比较清楚,而对鸭的了解仍然知之甚少。目前随着鸭的全基因组序列测序成功,鸭体内的一些免疫因子也相继被扩增和注释。Li等[22]从鸭胚成纤维细胞中克隆得到的MAVS,该分子是线粒体抗病毒信号蛋白,作为信号分子参与宿主防御和促使机体产生I型干扰素IFN-I;Cheng等[23]从鸭脾脏中克隆并鉴定了MyD88的两个异构体,该分子是骨髓样分化因子,在I型IL-1R和TLRT导NF-κB的激活信号通路中起着调节作用。这些研究结果对进一步研究鸭坦布苏病毒感染后宿主体内免疫反应的分子机制提供了有力的技术支撑。
参考文献:
[1] 曹贞贞,张 存,黄 瑜,等. 鸭出血性卵巢炎的初步研究[J].中国兽医杂志,2010,46(12):3-6.
[2] 周鹏程,陈建国,丁明孝.黄病毒科病毒编码的非结构蛋白及其功能[J].微生物学免疫学进展,1999,27(2):61-70.
[3] ZHU W,CHEN J,WEI C,et al. Complete genome sequence of duck Tembusu virus,isolated from Muscovy ducks in southern China[J]. J Virol,2012,86(23):13119.
[4] TANG Y,DIAO Y,GAO X,et al. Analysis of the complete genome of Tuembusu virus,a flavivirus isolated from ducks in China[J]. Transbound Emerg Dis,2012,59(4):336-343.
[5] BLITVICH BJ,SCANLON D,SHIELL B J,et al. Identification and analysis of truncated and elongated species of the flavivirus NS1 protein[J].Virus Res,1999,60(1):67-79.
[6] MARTIN J E,PIERSON T C,HUBKA S,et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase I clinical trial[J]. Infect Disease,2007, 196(12):1732-1740.
[7] YAN P,ZHAO Y,ZHANG X,et al. An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China[J]. Virology,2011,417(1):1-8.
[8] LI P,ZHENG Q S,WANG Q,et al. Immune responses of recombinant adenoviruses expressing immunodominant epitopes against Japanese encephalitis virus[J].Vaccine,2008,26(46): 5802-5807.
[9] LI Y,YE J,CAO S,et al. Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice[J].Gene Medicine, 2009,11(1):150-159.
[10] LIEBERMAN M M,CLEMENTS D E,OGATA S,et al. Preparation and immunogenicproperties of a recombinant West Nile subunit vaccine[J]. Vaccine,2007,25(3):414-423.
[11] 王文玲,陆柔剑,陆振华,等.流行性乙型脑炎病毒GSS株prM、E和NS1蛋白基因的克隆及在非复制型痘苗病毒中的表达[J].病毒学报,2003,19(2):210-216.
[12] ALLISON S L,SCHALICH J,ST IASNY K,et al. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E[J]. Virology,2001,75(9):68-75.
[13] AKIRA S,UEMALSU S,TAKEUCHI O. Pathogen recognition and innate immimity[J].cell,2006,124(4):783-801.
[14] 陈 禾. Raver 1调控MDA5介导的天然免疫的分子机制[D]. 武汉:武汉大学,2013.
[15] 景志忠,何小兵,房永祥,等.机体识别病毒核酸的几种分子模式及途径[J].畜牧兽医学报,2011,42(3):311-322.
[16] CHEN S L,LUO G F,ZHOU Y,et al. Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways[J]. Vet Res,2016,47,74.
[17] FU G H,CHEN C T,HUANG Y,et al. Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues froms ducks infected with avian Tembusu virus[J]. Arch Virol,2016,161:11-18.
[18] LI N,WANG Y,LI R,et al. Immune responses of ducks infected with duck Tembusu virus[J]. Front Microbiol, 2015,6:425.
[19] ZOU Z,LIU Y,ZHANG Y,et al. Adaptation and attenuation of duck tembusu virus strain Du/CH/LSD/110128 following serial passage in chicken embryos[J]. Clin Vac Immunol,2014, 21(8):1046-1053.
[20] CHEN P,LIU J,JIANG Y,et al. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus[J].Vaccine,2014, 32(41):5271-5277.
[21] 窍刚,高旭元,余 磊,等.鸭坦布苏病毒病活疫苗(FX2010-180P株)毒种保存期的研究. 中国动物传染病学报,2014(3):14-18.
关键词:免疫蛋白组学;研究进展
中图分类号:Q939.91文献标识码:A文章编号:1672-979X(2007)03-0050-05
Research Advance in Immunoproteomics
HAN Chen
(College of Food Science, Southwest University, Chongqing 400716, China)
Abstract:Immunoproteomics is a new science from the combination of proteomics and immunological analytical methods. The forming process,tools, main technical points and applications of immunoproteomics have been discussed in this paper. Meanwhile, the development of this new science is prospected in terms of its limitations.
Key words:immunoproteomics; advance
免疫原性蛋白质一直是微生物学家及医学家研究的热点。酶联免疫吸附测定(ELISA)、免疫共沉淀及蛋白质印迹(Western blot)等技术都是基于抗原抗体特异结合的原理,用于检测抗原存在与否,及探测一种疾病或一种微生物的免疫蛋白质组。但是,ELISA不能区分不同的免疫原性蛋白质,免疫沉淀则需要大量的抗体,且在抗原鉴定前需要去除抗体。起初,科学家曾试图用抗体从电泳后的固体胶中探测抗原,但因所需抗体量大、操作过程复杂且重复性差等原因进展缓慢。蛋白质从凝胶向膜转移技术的建立,使经凝胶分离后免疫原性蛋白质的探测成为可能,也促进了蛋白质印迹技术的发展。但传统的蛋白质印迹技术由于电泳分离的效果差,及抗原鉴定成功率低,往往只用于普通的检测、分析,很少用于大规模探测免疫原性蛋白质[1]。
蛋白质组学的特点是采用高分辨率的蛋白质分离手段,结合高效率的蛋白质鉴定技术,研究蛋白质的各种代谢和调控途径[2],使分离高分辨率及鉴定高成功率复杂蛋白质成为可能。现代蛋白质组学技术与传统免疫杂交方法相结合产生了一门新兴的交叉学科免疫蛋白质组学(immunoproteomics)[3]。
1 蛋白质组学
1.1概述
蛋白质组学属蛋白质化学的范畴,蛋白质化学包括研究蛋白质的结构和功能,通常涉及生物化学和酶学。蛋白质组学重点研究组成一个大系统的多个不同蛋白质的相互作用,它需对复杂混合物进行分析,不是通过测定完整序列进行鉴定,而是在数据库匹配工具帮助下进行部分序列测定。它是系统生物学而不是结构生物学;是鉴定系统的行为而不是鉴定任何单一组分的行为。
“蛋白质组”是一种细胞、组织或完整的生物体所拥有的全套蛋白质[4]。生命科学的研究工作主要有4个层次:基因组学(genomics),转录组学(transcriptomics),蛋白质组学(proteomics)和代谢组学(metabolomics)。人类基因组计划(human genomic project)顺利完成之后,后基因组时代(post genome era)来临,从而蛋白质组学成为科学家面临的最大挑战[5-7]。
蛋白质组学研究也是对分析手段的挑战。如何同时测定一个生物中大量或全部基因的表达似乎通过引入cDNA或寡核苷酸微阵已得以解决。用DNA微阵和相关方法分析基因表达依赖于两个重要工具:聚合酶链反应(PCR)和寡核苷酸与互补序列的杂交。但是没有类似的工具用于蛋白质分析。原因首先是没有蛋白质PCR等价物,目前不可能有多肽分子类似于核苷酸通过PCR复制的方式复制;其次,蛋白质不能专一性与互补氨基酸序列杂交。
另一个蛋白质组学的特有问题是细胞中每一个蛋白质产物并不一定只有一种分子实体。这是由于蛋白质翻译后有修饰[8]。修饰的内容随蛋白质的种类、细胞的调节机制和环境因子变化,许多蛋白质以多种形式存在。对任何特定基因的多种蛋白质产物进行检测和区分的必要性使蛋白质组学在分析方面更具挑战性[9]。
1.2蛋白质组学的工具
高通量、高灵敏度和规模化的双向凝胶电泳-质谱是目前最流行、最可靠的技术平台[10];酵母双杂交技术已用于研究蛋白质连锁群和蛋白质功能网络系统。生物信息学方法在蛋白质组学研究领域已得到有效的利用,其中突出的代表是Eisenberg等联合采用系统发育分布图(phylogenetic profiles)法、融合蛋白序列(rosetta stone)法和基因邻居(gene neighbor)法,成功地建立了酵母沉默信息调节子(silencing information regulator,SIR)作用网络和酵母朊病毒(prion)功能连锁网络。
除双向凝胶电泳,其他的蛋白质分离技术包括一维十二烷基硫酸钠聚丙烯酰胺凝胶电泳 (1D -SDS AGE)、高效液相色谱(HPLC)、毛细管电泳(CE)、等电聚焦(IEF)和亲和层析。最有力的技术是将不同的蛋白质和肽分离技术结合为多维技术,例如离子交换液相层析(LC)与反相高效液相色谱(RP-HPLC)的串联是分离复杂肽混合物的有力工具[11]。
1.3蛋白质组学的应用
1.3.1蛋白质表达谱鉴定生物或细胞的特定状态,如分化、发育状态或疾病状态下蛋白质的表达以及物理、化学刺激下蛋白质的表达。这种信息对于检测药物治疗的潜在靶子极为有用。
1.3.2蛋白质网络谱这是在生物系统中测定蛋白质之间相互作用的蛋白质组学方法。大多数蛋白质在执行功能时与其他蛋白质密切相关,这些相互作用是通过体外纯化的蛋白质和酵母双杂交系统获得的。通过亲和俘获配对技术与分析蛋白质组学方法相结合,蛋白质组学可以鉴定更复杂的蛋白质网络。在细胞中多蛋白质复合物与点到点的信号传导途径有关。在蛋白质网络谱可测定的过程中,所有参与者的状态是蛋白质组学最具远大前景的应用之一。
1.3.3蛋白质修饰谱这是鉴定蛋白质怎样以及在何处得到了修饰。许多蛋白质翻译后的修饰控制着蛋白质的靶向、结构、功能和转换。此外,许多环境化学因素、药物和内源化学因素可产生修饰蛋白质的活性亲电体。修饰蛋白质可用抗体测定,但是一个特定修饰的精确序列位点往往是未知的。蛋白质组学是研究翻译后修饰的性质和序列专一性最好的方法。此法的扩展允许在一个网络中同时鉴定调节蛋白质的修饰状态,这是蛋白质组学技术的重要扩充[12]。
2 免疫蛋白质组学的技术要点
2.1二维凝胶电泳
二维凝胶电泳(two-dimensional gel elect-rophoresis,2DE)又称双向凝胶电泳,它的发展使得蛋白质混合物的分离达到高重现性和高分辨率,使定性和定量分析2个或多个细胞或组织标本中的蛋白质成为可能。2DE的出现早于通过基因测序技术检测基因表达的方法,但2DE本身是一种重要的描述性技术,当分离后的蛋白质缺少快速和可靠的鉴定工具时,它在分子生物学研究中的应用受到限制。
软电离技术电喷雾离子化 (ESI)和基体辅助激光解吸电离 (MALDI)的出现,使质谱成为现代蛋白质科学中最重要的组成部分。基体辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)、电喷雾离子化串联质谱(ESI-MS/MS)取代了速度较慢、灵敏度较差的Eadman化学降解法,用于分析和鉴定2DE分离所获得的蛋白质样品。此类方法的一般步骤是:先从2DE胶切下待分析的蛋白质斑点,用胰蛋白酶对蛋白质进行胶内消化,然后用质谱技术分析消化后得到的多肽片断,用MALDI-TOF-MS测定酶解后的多肽片断得到肽质量指纹图谱并通过数据库检索来对蛋白质进行鉴定。在同一实验中未鉴定的蛋白质,再用纳升电喷雾串联质谱(nano- ESI-MS/MS)或联机的反相毛细管柱液相色谱电喷雾串联质谱进行自动的数据扫描,肽离子经碰撞诱导裂解(CID)产生的串联质谱图谱,与数据库中肽序列的理论串联质谱图进行对比检索,鉴定蛋白质。
纳升电喷雾串联质谱是基于Wilm和Mann的理论研究,现已成为分析从1D和2D上分离得到的微量蛋白质的有力工具。电喷雾上样还可在电喷雾接口前用HPLC分离多肽(在线CapLC-ESI-MS/MS)。nano-ESI- MS/MS和在线CapLC-ESI-MS/MS 2种方法是相互补充的,各有优势[3]。
2.2 半干转印
蛋白质从凝胶中向固相支持物的转移创造了Western免疫杂交研究方法,由于是在液体环境中进行,它转移速度慢,需要大电流,而大电流易产热,所以实验需在低温下进行,使用很不方便。半干转印解决了这个问题,且避免了缓冲液中不纯杂质向固相膜载体的转移。半干转印法只需将凝胶与膜紧贴,夹在转移缓冲液浸泡过的滤纸中间,然后将它们一起置于石墨电极之间,接通电源即可转移,在室温下1~2 h即可完成,非常方便。由于SDS在转移环境中与蛋白质可逆结合,如果胶上的蛋白质与SDS已经分离,则它由于失去了电场提供的驱动力而不能转移到膜上;相反,如果蛋白质已经转移到膜上而仍未与SDS分开,则蛋白质可能穿透膜而不能结合到膜上,因此,要控制好半干转印的时间。一般而言,高相对分子质量的蛋白质易丢掉SDS而留在胶中,低相对分子质量的蛋白质则不易丢掉SDS穿透膜。在阴极滤纸的转印缓冲液中补加SDS可促进SDS与蛋白质结合,从而有利于高相对分子质量蛋白质向膜上转移;通过增加杂交缓冲液中的离子强度,增加蛋白质与膜之间的疏水性相互作用,使低相对分子质量蛋白质获得了较好的杂交效率。
2.3免疫芯片
免疫芯片(immunochip)作为一种高通量同步多元检测系统,其检测操作所需样品量少、反应速度快、灵敏度高、稳定性好,在分子诊断学和蛋白质组学领域将会大有作为[13]。
目前,蛋白质组分析的研究主要依靠双向电泳和质谱,繁琐且低效,亟需建立简便易行、灵敏、高通量的表达蛋白质分析方法。其中之一就是基于抗体微阵列的蛋白质芯片[14]。通过抗体工程可以得到各种重组抗体,加上目前商业可得的抗体,将组成数量可观的抗体库,应用这些抗体制造的抗体微阵列免疫芯片即能对含有各种功能基团的蛋白质进行全面快速的分析。
随着芯片微型化技术的发展,微点的尺度进一步缩小至纳米尺度,出现了纳米阵列(nanoarray)免疫芯片。纳米点阵应用原子力显微镜(atom force microscopy,AFM)的针尖制作,纳点(nanospot)直径一般为100~350 nm,仅约为微米阵列中微点尺度的1/1 000。它不仅微型化程度高,而且检测程序无需进行分子标记,可直接用于复合物的测定,与表面等离子体共振(surface plasmon resonance,SPR)检测方法有相似之处。2002年,美国西北大学的研究人员利用AFM制作了以免疫球蛋白为捕获探针的纳米阵列免疫芯片,并验证其可与抗免疫球蛋白结合反应。
探针点并非越小越好,当点尺度小到一定程度时,因每点所含捕获分子数量过少,检测体系将表现出较大的差异性,从而失去统计学意义[15]。
3 免疫蛋白质组学的临床应用
3.1在糖尿病中的应用
Ⅰ型糖尿病(T1DM)是一种多基因、多病因的自身免疫性疾病,发病特点是选择性且不可逆的破坏胰岛B细胞,导致胰岛素产生障碍,患者终生需要外源性胰岛素。1987年,Nepom等用2DE和免疫沉淀法分析T1MD患者HLA分子,发现HLA分子存在杂合性。Winer研究非肥胖型糖尿病(non obesity diabetes,NOD)小鼠和糖尿病患者,通过SELDI-TOF-MS的质谱技术鉴定出胰岛Schwann细胞和Langerhans细胞分泌自身抗体,刺激胶质纤维酸性蛋白。研究发现,T1DM发病机制中存在自发免疫系统对抗胰岛神经组织的途径。Nielsen等的体外研究发现,B细胞成熟过程中在2 239个蛋白点中135个有差异变化,这是翻译后修饰的结果,这些翻译后修饰的蛋白质是研究T1DM发病机制的潜在靶位[16]。
蛋白质组学的研究技术在提高,将双向电泳技术用于小鼠组织,通过增大2D胶、使用窄范围的pH胶、细胞器分离可以获得超过10 000个蛋白点,远远超过传统方法获得的1 900个蛋白点。用 IL-1β研究胰岛B细胞系的蛋白质组学得到得结论是T1DM发病是多因素、动态的,并非某个基因单独作用的结果。
3.2在肿瘤诊断中的应用
蛋白质组学被用于鉴定癌症诊断的标志物,检测疾病进展和鉴定治疗的靶位。它在发现癌症的标志物方面具有重要价值,因为蛋白质组反映了细胞内在的遗传程序和直接的环境影响。美国国立肿瘤研究所组织的早期疾病探测研究机构多中心三期临床试验得出结论:通过血清及仪器标准化质控,增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)是目前最有希望的检测肿瘤早期的方法[17]。对乳腺癌和卵巢癌检测的敏感性和特异性为93%和91%,较传统的检测标志物癌抗原提高很多[18];对前列腺癌检测的敏感性和特异性为83%和97%;国内外学者还用SELDI技术对肺癌、肝癌、胃癌、肠癌、食道癌、鼻咽癌、喉癌、胰腺癌、膀胱癌、神经胶质瘤进行了检验和研究,也取得了很好的效果[19, 20]。
3.3在病原性疾病中的应用
许多感染性疾病如乙型肝炎、丙型肝炎、艾滋病、梅毒、鼠疫等的抗原尚依赖ELISA、放射免疫法、免疫荧光法等间接测定,用SELDI则可同时直接检测这些疾病特异性抗原的相对分子质量,并进行窗口期检查,这是其他检测手段无法做到的。
Jungblut等[21]通过免疫蛋白质组学手段,利用感染早期和晚期患者的血清研究了嘎氏疏螺旋体的免疫原性蛋白,在验证了传统使用的2个靶标抗原的同时,又找到了2个新的靶抗原。并且在幽门螺杆菌的诊断中,分别用幽门螺杆菌感染不同阶段及其他原因导致的胃炎患者的血清,探测了幽门螺杆菌不同菌株的免疫原性蛋白,对其感染特异的免疫原性靶标蛋白进行了深入系统的研究,为其诊断、预防和治疗奠定了良好的基础。
应天翼等[22]提取福氏贺杆菌2a 2457T全菌蛋白进行不同pH梯度的双向电泳,结合蛋白质印迹技术寻找发生免疫反应的蛋白质。用MALDI-TOF-MS鉴定了19个免疫反应蛋白点,对应于10种蛋白质,成功建立了福氏贺杆菌2a 2457T的免疫蛋白质组学研究方法,为寻找保护性抗原打下了基础。
Pitarch等[23]通过免疫蛋白质组学手段从白假丝酵母中鉴定到了42个有免疫原性的持家酶。通过进一步的研究发现,在念珠菌病发病过程中,磷酸甘油酸激酶与乙醇脱氢酶抗体的产生与刺激人的免疫分化有关,并验证了循环系统中白假丝酵母特异性抗体对念珠菌病发展的抑制作用。他们认为,高浓度的抗烯醇酶抗体的出现标志着患者处于恢复期,可作为病情发展的标记物。此研究为念珠菌病的早期检测及临床跟踪提供了靶标,且可能被用作设计抗真菌药物及疫苗的靶标。
3.4在其他疾病中的应用
英国Rrian Austen研究小组检测了老年性痴呆(AD)患者的组织和脑脊液,发现了一种β-淀粉样蛋白多肽,并被公认为是人脑产生神经退行性改变的标志物[24]。用SELDI进一步确定了抗原变异片段,为B型多肽的片段1~42,相对分子质量为4 511,是引发疾病的关键标志物。
在心血管病的诊断中,Allard等用SELDI技术首次发现载脂蛋白C-I(ApoC-I)和载脂蛋白C-Ⅲ(ApoC-Ⅲ)可区别缺血性和出血性脑卒中。用SELDI技术测定补体C3α链及纤维蛋白原的早期降解蛋白指纹,能更早地发现心肌梗死。
最近,Chen等提出免疫蛋白质组学应该分为3部分,(1)通过免疫蛋白质组学筛选外膜中具有免疫原性的蛋白质;(2)通过免疫后攻毒的方法鉴定免疫原性蛋白的保护性;(3)通过其中和能力来确定候选疫苗。按照上述原则,该研究小组通过实验从嗜水气单孢菌的外膜蛋白中筛选出了保护性达71.4%的抗原。但研究者认为,如果只作为诊断靶标,后两步不是必需的,而应通过与其他菌株之间的交叉反应来筛选。
4 展望
目前免疫蛋白质组学已成功地应用于生物医学的许多领域,如病源性微生物、自身抗原、肿瘤抗原及蛋白质修饰等的研究;也应用于不同种类免疫反应以及免疫反应过程中不同阶段特异性免疫蛋白质的研究。其原理还用于蛋白质翻译后修饰的研究,如通过磷酸化抗体来探测被检蛋白质中磷酸化的情况等。在今后生命科学的相关研究中,免疫蛋白质组学将应用于更为广泛的领域。
方法学上,二维凝胶电泳-质谱仍是目前最流行和较可靠的技术,但其通量、灵敏度和规模化均有待进一步加强,一些学者开始重视研究以色谱/电泳-质谱为主的技术。此外,酵母双杂交技术虽已用于研究蛋白质连锁群和蛋白质功能网络系统,但尚缺乏快速、高效的手段获取复杂蛋白质相互作用的多维信息。蛋白质组的生物信息学研究虽已有成功的先例,但其应用范围与准确率仍需提高,所面临的更大挑战是如何综合信息,准确分析蛋白质的相互作用,界定相互作用连锁群。
学术上,在基因组、转录组基础上的蛋白质组全谱研究,微生物已有成功的报道,但是在高等生物尤其是哺乳动物尚未见报道,人类组织或细胞的蛋白质组全谱研究则基本未涉足。此外,人类基因组草图虽已公布,但是,估计的3.5万左右基因中一半以上属理论推测,需要从蛋白质组水平予以检验与确认,因此,开展人类组织或细胞的蛋白质组表达谱的分析势在必行。
受基因调控的细胞内各种信号转导途径之间是相互交错和彼此关联的。虽然近年人们对转导途径以及相互关系的认识取得了进展,但是,针对任一生物体组织、细胞开展全方位的蛋白质组相互作用网络的分析鲜有报道。而此类相互作用网络的揭示对于深刻认识重要生理、病理过程的机制是不可缺少的[25]。
参考文献
[1]王军军,王恒,黄留玉. 免疫蛋白质组学及其在病原菌研究中的应用[J]. 生物技术通讯,2005,16(3):313-316.
[2]Blonder J, Rodriguez-Galan M C, Lucas D A, et al. Proteomic investigation of natural killer cell microsomes using gas-phase fractionation by mass spectrometry [J]. Proteomics, 2004, 1698(1): 87-95.
[3]利布莱尔D C. 蛋白质组学导论[M]. 北京:科学出版社,2005:17-69.
[4]孙薇,贺福初. 差异蛋白质组学研究技术新进展[J]. 化学通报,2005,(6):401-407.
[5]Schaefer H, Chamrad D C, Herrmann M, et al. Study of posttranslational modifications in lenticular αA-Crystallin of mice using proteomic analysis techniques [J]. Proteomics, 2006,1764(12): 1948-1962.
[6]Li C, Hong Y, Tan Y X, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using lasercapture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry [J]. Mol Cell Proteomics, 2004, 3 (4): 399-409.
[7]Eisener A F, Pato C N, Dewan M, et al. From genomics to proteomics: new directions in molecular neuropsychiatry [J]. Acta Neuropsychiatrica, 2003, 15(6): 388-397.
[8]Sechi S, Chait B T. Modification of cystrine residues by alkylation-A tool in peptide mapping and protein identification [J]. Anal Chem,1998, 70(24): 5150-5158.
[9]Sickmann A, Meyer H E. Phosphoamino acid analysis [J]. Proteomics, 2001, 1(2): 200-206.
[10] 贺福初,孙建中,叶鑫生,等. 蛋白质科学[M]. 北京:军事医学科学出版社,2002:1-74.
[11] 李明珠,张部昌,黄留玉. 蛋白质组学中的分离检测术[J]. 生物技术通讯,2005,16(1):93-95.
[12] 徐燕丰,胡晋红,朱全刚. 蛋白质组学:药理学研究的新动力[J]. 中国药理学通报,2004,20(8):849-852.
[13] 史绵红,曲海云,张松,等. 疾病标志物快速检测的免疫芯片研究[J]. 化学通报,2005,25(2):356-357.
[14] 叶雯,刘凯于,洪华珠,等. 定量蛋白质组学中的同位素标记技术[J]. 中国生物工程杂志,2005,25(12):56-61.
[15] 宋世平. 免疫芯片研究的现状及未来[J]. 中华检验医学杂志,2003,26(8):515-517.
[16] 李平平,申竹芳. 蛋白质组学及其在糖尿病学中的应用[J]. 中国药理学通报,2005,21(12):1409-1413.
[17] 毕晔,宋现让,左文述. 蛋白质组学在乳腺癌研究中应用的现状与展望[J]. 肿瘤防治杂志,2005,12(20):1589-1594
[18] 郑长黎. 胃癌蛋白质组学研究进展[J]. 国外医学・生理、病理科学与临床分册,2005,25(2):142-144.
[19] 胡学飞, 张国锋. 结肠癌及其肝转移的蛋白质组学研究进展[J]. 国际外科学杂志,2006,3(1):37-40.
[20] 张辉. SELDI-TOF-MS技术在妇科恶性肿瘤早期诊断中的应用[J]. 国外医学妇产科学分册,2006,33(1):36-39.
[21] Jungblut P R, Bumann D, Hass G, et al. Comparative proteome analysis of Helicobacter pylori. [J]. Microbiol, 2000, 36: 710-725.
[22] 应天翼,廖翔,冯尔玲,等. 福氏志贺杆菌2a 2457T免疫蛋白质组学方法的建立[J]. 世界华人消化杂志,2005,13(11):1272-1274.
[23] Pitarch A, Sanchez M, Nombela C, et al. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome [J]. Mol Cell Proteomics, 2002, 1(12): 967-982.
【关键词】 化学发光免疫分析技术;基本原理;分类;应用
近10多年来,当代生物技术的研究和应用取得高速发展的同时,也大大推动了化学发光免疫分析方法(CLIA))的更新换代速度。化学发光免疫分析法(CLIA)是建立在放射免疫分析技术(RIA)理论的基础上,以标记发光剂为示踪物信号建立起来的一种非放射标记免疫分析法,具有灵敏度高、线性范围宽、仪器设备简单、操作方便、分析速度快和容易实现自动化和不污染环境等优点,特别是能在较短的时间内得到实验结果,因此深受检验医学工作者和临床医师的好评。
1 化学发光免疫分析的原理
化学发光免疫分析技术的基本原理,化学发光免疫分析含有免疫分析和化学发光分析两个系统[1]。免疫分析系统是将化学发光物质或酶作为标记物,直接标记在抗原或抗体上,经过抗原与抗体反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测[2]。根据化学发光标记物与发光强度的关系,可利用标准曲线计算出被测物的含量。
2 化学发光免疫分析的分类
化学发光免疫分析根据应用发光体系应用于免疫分析中的方式不同可分为直接标记发光物质的免疫分析,酶催化化学发光免疫分析,电化学发光免疫分析(ECLIA)。直接标记发光物质的免疫分析,目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。
3 化学发光免疫分析的临床应用
CLIA已广泛应用于基础和临床医学的各个领域,成为替代RIA的首选技术。Amersham公司针对AmerliteTM发光增强酶免疫分析系统研制出的试剂盒项目有甲状腺功能检测的促甲状腺素、三碘甲腺原氨酸、甲状腺素、甲状腺素结合球蛋白、游离甲状腺素,与性激素有关的有促黄体激素、促卵泡激素、人绒毛膜促性腺激素、甲胎蛋白、雌二醇、睾酮,以及其他方面的如癌胚抗原、铁蛋白、地高辛等。Amersham公司虽然研制出这10余种试剂盒,但因操作不够简便,检测项目仅限于蛋白质类大分子化合物,未能广泛应用于临床医学检测。
美国Ciba Corning公司研制的ACS:180自动CLIA系统能非常精确测量闪光。经过不断的改进,实现了ACS:180CLIA系统的全自动化,推出全新产品"ADVIA系列"。现有检测项目47项,更多的项目还在开发之中。主要有甲状腺系统、性腺系统、血液系统、肿瘤标记物、心血管系统、血药浓度及其他一些检测项目。
经过改良后,金刚烷衍生物在碱性磷酸酶作用下可发出高强度的辉光,光信号可持续1~2 h。随后国外生产厂家研制出以碱性磷酸酶为标记物的试剂盒,与之相匹配的有DPC的IMMULITE全自动CLIA系统和Beckman的ACCESS全自动微粒子CLIA系统。IMMULITE全自动CLIA系统可检测项目有心脏病、甲状腺功能、性腺激素、传染病、药物、血清学、血液病、成瘾药物、糖尿病、过敏检测和肿瘤标志物。ACCESS全自动微粒子CLIA系统主要可检测甲状腺功能、血液系统、内分泌激素、药物、肿瘤因子、心血管系统和糖尿病等项目。
目前商品化的ECLIA分析系统只有Roche公司的ECLIA全自动分析系统。主要特点是本底信号极微,特异性更高,最小检出值可达1 pmol以下,操作十分简便快速,是CLIA优点较为集中的完美分析技术。已提供试剂盒的项目有肿瘤标志物、甲状腺功能、内分泌、传染病、心肌标志物和维生素类等项目。
王阳[3]运用了电化学免疫分析技术,检测了3种肿瘤标志物癌胚抗原(Carcinoem-bryonic Antigen,CEA)、细胞角蛋白l9片段(Cytokeratin 19fragments,CYFRA21,1)和神经元特异性烯醇化酶(Neuron-specific enolase,NSE)水平,对肺癌诊断有实际应用价值。张忠英[4]等利用电化学发光免疫分析技术检测尿CK19片段,结果显示尿CK19检测对膀胱癌等泌尿系统肿瘤诊断和复发监测具有敏感性高、无创伤性的优点,优于血清CK19和尿细胞学检查。动态观察尿CK19片段含量的变化可降低急性尿感患者的假阳性率。王利娜[5]等应用ECLIA测定和酶免疫测定(EIA)检测乙肝标志物。结果:应用ECLIA方法检测HBsAg精密度,最大批内变异≤8.30%,最大日间变异≤15.33%,HBsAg灵敏度0.05 ng/ml,HBeAg灵敏度0.03NCU/ml。HBsAg检测范围0.01~7 000 COI。显示ECLIA检测HBsAg灵敏度高,重复性好,检测范围宽。检测HBeAg灵敏度可能更高。李锦洲[6]等采用ECLIA法对卵巢癌、良性卵巢肿瘤及健康妇女血清CA125分别进行测定,ECLIA用于第二代CA125(CA125-Ⅱ)测定,使CA125测定更加敏感恒定,每日之间差异较小。黄琛,汤汉红等[7]在ECLIA法检测与蛋白质芯片法多肿瘤标志物结果差异的研究中显示:两种方法有较好的相关性(P
化学发光免疫分析技术在医学的临床应用已非常成熟,有取代放射免疫分析技术和酶联免疫分析技术而成为诊断市场上的主流产品的趋势。国外的化学发光免疫分析检测系统价格昂贵,普及有一定的困难;国内的化学发光免疫分析检测系统虽然价格较国外产品便宜很多,但其检测的灵敏度和可靠性,还有待进一提高。研究者在如何提高免疫诊断的敏感性和特异性、发展新的分析体系和检测技术便携化等方面仍需要不断努力。
参 考 文 献
[1] 李美佳.当代免疫学技术与应用.北京:北京医科大学国协和医科大学联合出版社,1998:549-561.
[2] 翟艳,王卉.化学发光免疫分析及其进展.长春中医药大学学报,2009,25(4):619-621.
[3] 王阳.电化学发光免疫分析技术检测3种肿瘤标志物对肺癌的诊断意义.Chin J Lab Diagn,2006,10(3):294-296.
[4] 张忠英.电化学发光免疫分析技术检测尿CK19片段的临床应用及其评价.中华检验医学杂志,2005,28(1):50-53.
[5] 王利娜,姚智.电化学发光免疫分析技术检测乙肝标志物的应用.天津医科大学学报,2008,14(1):48-50.
[6] 李锦洲,洪锡田,吕晓娴.肿瘤标志物CA125检测在卵巢癌诊断中的价值.中国误诊学杂志,2005,5(8):1456-1457.
[7] 黄琛,汤汉红,王敏民.蛋白质芯片技术与电化学发光技术检测多肿瘤标志物结果的评价.天津医药,2008,36(12):942-944.
[8] 张瑞,贾良勇.电化学发光免疫分析法在HCG定量检测中的应用.延安大学学报(医学科学版),2008,6(3):108-109.
[9] 田润华,郑春喜,王士珍.电化学发光免疫分析与临床应用.齐鲁医学杂志,2004,19(5):464-465.
[10] 周建光,杨梅.电化学发光免疫分析技术与临床应用.医疗装备,2010,23(5):23-24.
【关键词】 老年人;乙型肝炎;免疫学
乙型肝炎(HB)是一种世界范围内流行的传染病。据估计,全球约20亿人曾经感染HB病毒(HBV),慢性感染者约有3.5~4亿人,每年有100万人死于HBV所致的肝硬化、肝衰竭及原发性肝癌〔1〕。我国为HB高发国家,人群HBV感染率约为9.09%〔2〕,HB已成为严重的社会问题。HBV感染和机体的免疫状态密切相关,儿童期HBV感染,约90%发展成为慢性感染,而青少年及成年期感染,仅有10%发展成慢性感染。随着年龄老化,手术及输血的机会增多,以及老年人脏器特有的变化,导致老年人慢性HBV感染机会明显增加。
1 HBV的特点
HBV属于嗜肝DNA病毒,其完整的病毒颗粒成为Dane颗粒,直径42 nm,由双层外壳和一个核心组成。核心直径为27 nm,内含环状双股DNA,DNA聚合酶、核心蛋白〔3〕。外部为包膜蛋白,厚约7 nm,即表面抗原。其基因组由S区、C区、X区和P区组成。S区编码前S1蛋白、前S2蛋白及乙肝病毒表面抗原(HBsAg)。前S蛋白有很强的免疫原性。在HBV的附着和侵入宿主肝细胞的机制中起着重要的作用。前S1和前S2蛋白可引出和调节宿主的体液和细胞免疫应答,对于清除体液内的病毒和阻止病毒感染健康的肝细胞提供重要的免疫防御机制。C区由前C基因和C基因组成,前C基因编码的蛋白质经加工后分泌到细胞外形成乙肝病毒e抗原(HBeAg),C基因编码的蛋白质为HBcAg。目前认为HBcAg是宿主Tc(细胞毒T细胞)作用的主要靶抗原。P区是最长的开放性读码框,编码多种功能性蛋白,包括逆转录酶/DNA聚合酶、RNA酶等,参与HBV的复制。X基因编码X蛋白,可激活多种调控基因,与原发性肝癌的发生密切相关。
2 HBV感染的免疫学机制
一般认为HBV不直接损害肝细胞,而是通过宿主的免疫应答和反应引起肝细胞的损伤和破坏。宿主免疫反应的不同,直接影响HBV感染所致的转归。HBV感染后,机体清除HBV的机制主要包括特异性体液和细胞免疫反应,以及非特异性免疫反应。
2.1 急性HB的免疫机制 HBV感染肝细胞后,病毒抗原被抗原提呈细胞(APC)的蛋白酶体裂解成小分子的寡肽,并与肝细胞内人类白细胞抗原(HLAI)类分子结合成复合物,表达于细胞表面,成为T细胞表位。CTL通过表面的CD8+分子与HLAI类分子产生黏附,并由TCR识别上述寡肽表位,此类CTL即为HBV抗原特异性CTL(HBV antigens Specific cytotoxic lymphocytes,HBVsCTL)。HBV特异性的CTL通过分泌大量的γ干扰素(IFNγ)等细胞因子达到清除病毒的作用。在自限性急性乙型肝炎患者中,特异性CTL应答作用强,可能与病毒被迅速清除而肝细胞损伤较轻有关,而在老年患者中,胸腺老龄退化,T细胞活性下降,其亚群分布发生改变,导致CTL活性和杀伤力明显下降,导致肝炎慢性化〔4〕。
2.2 HBV感染慢性化的免疫机制
2.2.1 天然免疫 树突状细胞(dendritic cells, DCs),是至今发现的功能最为强大的专职APC,是机体对异己抗原发生免疫应答的首要环节〔5〕。根据其细胞表面的标志可分为髓样树突状细胞(myeloid dendritic cell,mDC)和浆细胞样树突状细胞(plasmacytoid dendritic cell,pDC)。pDC在宿主对病毒的防御机制中起到重要的作用,并具有大量分泌Ⅰ型干扰素的能力。DCs既是天然免疫的重要组成部分,可通过Toll样受体(Toll like receptor,TLR)识别病原相关分子模式(pathogen associated molecular pattern,PAMP)而触发,分泌IFN、白介素(IL)等细胞因子,促进DCs自身成熟的同时,对病原体进行原始杀伤〔6〕。同时,DCs也是连接天然免疫和获得性免疫的桥梁。成熟的DC表面高表达HLADR,CD86(B71),CD80(B72)等共刺激分子,可高效激活未致敏T淋巴细胞,发挥特异性细胞免疫〔7〕。因此,DC的功能状态、表达的TLR对机体天然免疫以及获得性免疫起到关键作用。大量研究表明,老年慢性乙型病毒性肝炎患者外周血DCs存在表型缺陷,成熟障碍,功能下调〔8〕,不能有效将外来抗原有效递呈给T淋巴细胞,而致不能及时有效启动特异性免疫,清除HBV,最终导致HBV感染持续化。
Toll受体为Ⅰ型跨膜糖蛋白,识别特异性高度保守分子,可以表达在胞膜及胞内,已知人的TLR受体有11种。其中TLR 2、4、5表达在细胞表面,TLR3、7、8表达在内涵体和溶酶体膜,TLR9表达在内质网,活化后进入内涵体和溶酶体〔9〕。其中TLR 3、7、8、9参与了抗病毒的天然免疫反应〔10,11〕它在天然免疫中通过对病源分子相关模式(PAMP)的识别发挥作用,通过刺激信号的级联反应导致细胞因子的产生和协同刺激因子的表达,在天然免疫和获得性免疫中起到了桥梁的作用。大量的研究显示HBV和天然免疫系统之间存在相互的作用,HBV可干扰Toll样受体的信号转导,抑制细胞因子IL10、IFNγ、TNFα的产生,HBV还可引起MD1效应分子的表达上调,进而引起TLR 4的表达下调,间接抑制TLR为媒介的免疫机制〔12〕,从而引起感染的持续化。
2.2.2 获得性免疫 HBV感染机体后,除了早期建立起来的非特异性免疫应答外,还有特异性免疫应答,而后者更为重要。特异性免疫应答主要包括体液反应和细胞反应。体液免疫中的特异性抗体主要作用是中和循环内的病毒并阻止病毒感染健康的肝细胞,老年人B 细胞的成熟过程明显减慢,其成熟周期延长,B 细胞各亚型的活力不同程度地下降,其周转率也呈不同程度的减退;B 细胞表面免疫球蛋白(Ig)浓度降低,产生抗体活力亦随增龄而下降,免疫应答亦降低〔13〕。细胞免疫反应包括抗原特异的细胞毒怀淋巴细胞(TCL),自然杀伤细胞(NK),抗体依赖的细胞毒细胞(ADCC)和淋巴因子激活的K细胞(LAK)等,其中以CTL最为重要〔14,15〕。
HBV特异性细胞毒性淋巴细胞(CTL),通过T细胞受体(TCR)识别APC(病毒感染的肝细胞,吞噬病毒抗原的树突状细胞等)表面的主要组织相容性复合体(Major histocompatibility complex MHC)Ⅰ类分子结合活化,活化的主要通过以下两个途径发挥作用①溶胞途径:机体针对HBV编码产物所产生的特异性T淋巴细胞,借助其分泌的穿孔素、颗粒酶及其表面表达的Fas配体等使病毒感染的靶细胞凋亡。②非溶胞途径:机体针对HBV编码产物所产生的特异性T淋巴细胞通过分泌特定的细胞因子如IFNγ和TNFα来抑制HBV的复制继而达到清除病毒的作用〔16〕。CD4+T淋巴细胞的主要作用是辅助B淋巴细胞产生抗体及诱导CTL活化,同时也能增强树突状细胞的活化CD8+效应T细胞的过程,从而清除病毒〔17〕。老年人因胸腺萎缩等原因表现免疫功能低下,而胸腺是主要的免疫器官,是T淋巴细胞成熟分化的场所,在老年慢性乙肝患者中,虽然T细胞的总数没有发生明显的变化,但是其增殖力及活性随着胸腺的退化而逐渐下降,亚群分布发生变化,CTL活性及杀伤力受损,引起感染慢性化〔18〕。
3 老年慢性乙型肝炎的特点
HBV感染后慢性化的机制,除了特异性免疫应答因素外,尚有许多其他的因素,病毒因素包括病毒的基因型、突变等宿主因素包括宿主的年龄、性别、人白细胞抗原基因型和免疫应答等方面。
3.1 免疫系统退化 60岁以上老年人胸腺组织已不易测到。因此,细胞免疫功能显著受损,淋巴细胞功能受损,B 淋巴细胞功能也随之下降,致使体液免疫功能发生改变。另外,老年人血清免疫球蛋白IgA及lgG值增加,IgA增高更显著,而IgM浓度下降,多数老年人血清中有自身抗体。这也反映老年人免疫系统失调。
3.2 病毒的变异 随着HBV感染时间的延长,自身的不断复制,以及宿主的免疫压力、外环境和药物的作用下,病毒会形成变异,从而对免疫系统产生新的影响。其中比较常见的是前C区1896位点的变异,前C基因变异可能影响到抗原的加工、提呈,变异的抗原与HLA形成的复合物发生构型变化,从而使CD4+T细胞失去了对复制病毒的特异性的识别能力,同时也影响CTL对病毒的识别,致使T细胞免疫作用下降。Bertoletti等〔19〕研究发现野生型病毒前C基因表达的产物可引起HLAA2限制性CTL发生反应,而突变株病毒无此作用,说明特异性CTL对变异病毒的抗原丧失了反应能力,从而导致宿主免疫功能低下。Tur等〔20〕也发现HBeAg的缺失易导致宿主免疫功能紊乱。慢性乙型肝炎病毒感染者前C区位点突变,常伴有较高水平HBVDNA复制效率,存在更严重的免疫紊乱,HBeAg的表达是影响宿主外周血T细胞亚群变化的一个重要因素。
4 总 结
HBV感染机体后,首先由APCs等吞噬细胞捕获异己抗原,启动天然免疫屏障,发挥非特异性的免疫应答,起到初步清除病原体的目的。继之通过一系列的信号转导过程,把异己抗原信号呈递给淋巴细胞,启动适应性免疫,活化的CTL通过两条途径清除病毒即胞溶途径分泌穿孔素、颗粒酶等细胞毒分子直接杀伤病毒感染的靶细胞或者途径介导靶细胞凋亡和非胞溶途径分泌细胞因子抑制病毒复制。而老年人胸腺老龄化退化,各种免疫细胞的活性明显下降,机体免疫功能低下,免疫应答能力下降,其抗原提呈功能及细胞免疫功能明显下降,导致病毒感染的肝细胞持续发生损害,清除病毒抗原的作用明显减弱,成为疾病的慢性化的主要因素。除上述因素外,老年人肝脏重量减轻,肝细胞数及细胞器数明显减少,也参与疾病慢性化的过程中。因此,对于老年HB的免疫学的研究,对其治疗及预后有重要意义。
参考文献
1 World Health Organization.Hepatitis B.World Health Organization fact sheet 2004 dex.(Revised October 2000)〔EB/OL〕. who.int/mediacentre/factsheets/fs204en/in html.
2 Liang XF,Chen YS,Wang XJ,et al.A study on the seroepidemiology of hepatitis B in Chinese population aged over 3years old〔J〕.Zhonghua Liu Xing Bing Xue Za zhi,2005;26(9):65558.
3 Lee WM.Hepatitis B virus infection〔J〕.N Engl J Med,1997;337(24):173345.
4 Weng NP.Aging of the immune system:how much can the adaptive immune system adapt〔J〕? Immunity,2006;24(5):4959.
5 Tanaka Y,Mizokami M.Nucleic acidbased testing for hepatitis B virus infection disease〔J〕.Nippon Rinsho,2005;12(13 Suppl):3317.
6 Vasselon T,Detmers PA.Toll receptors:a central element in innate immune responses〔J〕.Infect Immun,2002;70(3):103341.
7 Shah SR.Understanding hepatitis B〔J〕.J Assoc Physicians India,2005;53(8):7116.
8 曹雪涛.树突状细胞的分化发育、抗原提呈及其功能调控的研究〔J〕.第二军医大学学报,2004;25(5):5479.
9 Wang RF,Peng G,Wang H Y.Regulatory T cells and Tolllike receptors in tumor immunity〔J〕.Semin Immunol,2006;18(1):13642.
10 Werling D,Jungi TW.Tolllike receptors linking innate and adaptive immune response〔J〕.Vet Immunol Immunopathol,2003;91(1):112.
11 Andersen J M,AlKhairy D,Ingalls RR.Innate immunity at the mucosal surface:role of tolllike receptors 3 and tolllike receptor 9 in cervical epithelial cell responses to microbial pathogens〔J〕.Biol Reprod,2006;74(5):82431.
12 Bockhamn J,Lutgetmann M.Intrahepatic analysis of cytokine and tolllike receptors signaling expression in chronic hepatitis B patients with different HBV replication activity〔J〕.Hepatology,2008;48(suppl 4):680A.
13 Min H,MontecinoRodriguez E,Dorshkind K.Effects of aging on early Band Tcell development〔J〕.Immunol Rev,2005;205(1):717.
14 Chang JJ,Lewin SR.Immunopathogenesis of Hepatitis B virus infection〔J〕.Immunol Cell Biol,2007;85(1):1623.
15 Thimme R,Wieland S,Steiger C,et al.CD8(+) T cells mediateviral clearance and disease pathogenesis during acute hepatitis B virus infection〔J〕.J Virol,2003(1);77:6876.
16 Guidotti LG,Chiari FV.Noncytolytic control of viral infection by the innate and adaptive immune response〔J〕.Annu Rev Immunol,2001;19(1):6591.
17 Thimme R,Wieland S,Steiger C,et al.CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection〔J〕.J Virol,2003;77(1):6876.
18 Goronzy JJ,Weyand CM.T cell development and receptor persity during aging〔J〕.Curr Opin Immunol,2005;17(5):46875.
免疫胶体金定性检测法主要有斑点免疫金渗滤法(DIGFA)和胶体金免疫层析法(GICA)。二种方法都具有检测快速、简单、特异性强、灵敏度高、抗基质干扰强等优点,因此是一种适合基层现场筛查的快速检测方法。
1.斑点免疫金渗滤法
免疫金渗滤技术在上世纪80年代中期从固相酶免疫检定技术上发展出来的。斑点免疫金渗滤法作为一种初筛试验手段,体现了较高的早期诊断价值,有着很好的实用前景。李春晖等人[2]认为在粪便隐血检测中,胶体金渗滤法的灵敏度、抗干扰能力均优于邻甲苯胺法。李如林等[3]利用ELISA、流式微球载体技术(FMA)和胶体金渗滤三种不同方法进行血清梅毒抗体检测,结果显示ELISA、FMA和DIGFA的三种方法灵敏度分别为96.00%、100%和94.00%,三种方法的特异性均为100%,提示三种方法的检测结果具有极强的一致性。
2.胶体金免疫层析法
上世纪90年代初,在免疫金渗滤技术的基础上又建立了一种更为简易快速的免疫层析检测技术。Marot-Leblond等[4]采用GICA法进行阴道念珠菌检测,结果敏感性为100%,特异性为82%,优于传统革兰染色镜检和微生物培养。方春元等[5]用胶体金早早孕定性检测试验和化学发光免疫法进行比较:2.0IU以下与阴性的符合率为100%、2.0~1000.0IU与弱阳性的符合率为97.2%、1000.0IU以上与强阳性的符合率为97.5%,二者结果有着较好的一致性。王玉金等[6]建立了一种霍乱弧菌O139胶体金免疫层析快速检测法,检测霍乱弧菌O139群的最低检出浓度为1×105CFU/ml;与细菌培养法对比检测184份临床标本,特异性和灵敏度均达100%。Brunt等采用GICA技术检测大肠杆菌O157,检测限为500个细菌[7]。梁秋光等[8]用GICA检测含鼠疫阳性参考血清的鼠型动物溶血血清45份,结果全部阳性,而间接血凝微量法的对照结果则无法判断,表明GICA法在应对溶血血清方面有着很大的优越性。孟芳等[9]对心脏疾病患者进行心肌三联测试,其灵敏度肌红蛋白为100%、肌酸肌酶同工酶为96.3%和肌钙蛋白为85.2%;结果表明胶体金法心肌三联检测卡,对诊断急性心肌梗死具有较好的临床诊断价值。
二、半定量、定量检
测胶体金本身具有明显的红色或粉红色,可用肉眼与光学传感器判断检测线(T)的颜色深浅,进行半定量、定量分析。
1.半定量检测法
早期就有人提出硝酸纤维素膜上的显色面积与抗体浓度呈正相关[10],从而建立了半定量测定方法;曹丹如等[11]建立一种伴有定量质控点的斑点免疫金渗滤法,可半定量检测人尿中的微量白蛋白。该立法与散射免疫浊度法的结果符合性良好,已经达到了对尿微量白蛋白筛查试验的临床要求。
2.定量检测法
随着胶体金免疫定量检测仪的出现,开创了一种新型的快速定量分析方法。定量分析方法的原理是基于硝酸纤维素膜上检测线(T)的颜色深浅与待测物浓度呈现一定的比例关系[12];利用光学传感器对试剂条进行扫描,与事先制定的标准曲线对比,从而得出定量分析的结果。由于胶体金试纸条检测线显色是一个动态过程,试纸条的生产工艺、检测时的工作环境以及待测样本的差异性等因素都会影响到这一动态显色的结果[13]。因此有人提出了一种检测线(T)/质控线(C)比值定量法。T/C比值法是依据硝酸纤维素膜上的T、C线显色反应的影响因素基本一致,通过T、C线吸光值的比值,在一定程度上可以消除时间、温度和待测样本等因素对试纸条显色过程的影响[14],是一种较为合理的定量检测方法。谢士嘉等[15]建立的胶体金免疫层析定量方法,能准确地检测样品中的金黄色葡萄球菌肠毒素B,其检出限为8ng/ml,线性范围为8~1000ng/ml。聂聪等[16]所建立的基于T/C比值的胶体金免疫层析方法,对相思子毒素检测的灵敏度已达到为30ng/ml,线性范围30~600ng/ml,敏感性与ELISA法相近,已达到临床检测范围。
三、胶体金技术的其他应用
1.在免疫电镜上的应用
随着胶体金技术的不断发展,人们将其与电镜技术相结合,逐步形成了胶体金免疫电镜技术。它具有灵敏度高、特异性强、定位精确等优点。吴淑燕等[17]建立胶体金标记血小板膜糖蛋白的免疫电镜技术,结果表明利用胶体金技术可以显著的提高样品的检出率,为开展血小板功能研究奠定基础。
2.在纳米磁与核酸适配体上的应用
纳米磁分离-胶体金与核酸适配体-胶体金为当前二种新型的胶体金技术。纳米磁性微粒和核酸适配体作为特异性识别元件,能够将靶分子从成分复杂的生物体系中分离出来,起到样品的浓缩作用,从而提高检测的灵敏度和检出率[18]。
3.在多项联合检测技术上的应用
多项联合检测技术可以同时检测多种成分,能节省大量的检测时间和成本,具有很大的应用价值,是未来的发展方向。吴坚美等[19]建立了一种新型胶体金免疫层析试纸条,可同时检测巨细胞病毒、风疹病毒、弓形虫和单纯疱疹病毒的4种抗体;与ELISA法对比,其符合率为97.90%~100%。吴文晔等[20]建立了一种能同时检测检测黄曲霉毒素B1和赭曲霉毒素A两种真菌毒素的胶体金试纸条,二种毒素的灵敏度均可达到2.5μg/L,且二者之间互不干扰,重复性、稳定性均良好。
四、结语