欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

节能优化设计范文

时间:2024-03-23 09:04:00

序论:在您撰写节能优化设计时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

节能优化设计

第1篇

一、优化设计对建筑节能的影响

1、设计方案影响工程建造直接能源消耗

在工程设计中,其建筑和结构方案的选择对建筑的直接能耗有较大影响,如建筑方案中的平面布置为内廊式还是外廊式、进深与开间的确定、立面形式的选择、层高与层数的确定、基础类型选用、结构形式选择等都存在着技术经济分析问题。中国住宅建设用钢平均每平方米55公斤,比发达国家高出10%~25%,水泥用量为221.5公斤,每一立方米混凝土比发达国家要多消耗80公斤水泥。据统计,在满足同样功能的条件下,技术经济合理的设计,可降低工程建造直接能源消耗5%~10%,甚至可达10%~20%,如某无线电厂的多层框架结构厂房(4层),设计单位按常规设计为独立基础,由于多层厂房荷载较大,致使独立基础的单体尺寸较大,埋深较深(-3.2m),事后经其他设计人员分析如采用柱下条基,可节约大量的砼,并可降低埋深减少土方开挖所消耗的机械能耗;某综合办公楼,在优化设计中,因改变原先设计中的普通钢筋为带肋钢筋,单此一项优化设计,共节约钢筋1000T,钢筋总节约率达30%左右。

2、设计方案影响建成后使用的能耗

建筑是牵涉到很多专业的复合体,并且完整的建筑节能工作包括了从最初的规划、方案到设计、施工,以及多年的运营使用,直至最后拆除重建的全生命周期过程。但以往只注重直接建造成本的降低,轻运营阶段能耗的使用情况。从住宅使用过程中的资源消耗看,与发达国家相比,我国住宅使用能耗为相同技术条件下发达国家的两到三倍。2020年,中国的建筑能耗将达到29430亿度电,比三峡电站34年的发电量总和还要多。现在,我们必须用全寿命周期的节能理念对建筑进行优化设计,即以较低的寿命周期能耗实现必要的功能,获得丰厚的寿命周期经济效益。所谓寿命周期能耗是指整个寿命周期过程中发生的全部能源消耗,包括建设、使用、维修、残值及清理等阶段所发生的能源消耗。设计不仅影响项目建设的一次性能耗,而且还影响使用阶段的能源消耗,如暖通、照明的能源消耗、清洁、保养、维修等,一次性建造能耗与经常性使用能耗有一定的反比关系,但通过优化设计可努力寻求这两者的最佳结合,使项目建设的全寿命费用最低,全寿命能耗达到最佳经济合理状态。建筑节能优化设计的途径主要是通过围护结构保温和气密性能的提高,以及采暖空调设备能效的提高等等,来达到减少空调和采暖等能源的消耗。在方案设计当中,建筑师需要对建筑的方位、体型、朝向进行优化,必需要为充分利用自然风、阳光等自然资源创造条件。同时,也必须对建筑材料优化;外墙、楼板、分户墙、屋面、玻璃、窗框的设计等都需要量化与优化;窗墙比须要以节能和居住舒适度为前提进行优化。从方案设计开始到初步设计,工程师需要根据不断调整的设计方案模拟量化建筑的能耗情况、计算空调和采暖设备的装机功率,比对各种影响因素,最后向客户提供最佳的设计方案。例如,在空调与采暖设备的市场上,各种品牌各种型号使消费者眼花缭乱。空调设备有空气源热泵、地源热泵、风机盘管、地板采暖、辐射制冷、采暖系统、户室中央空调、变频机组、水系统、冷媒系统等等。这些空调系统的初投资和运行费用大不相同,那么通过模拟量化,计算出初投资的费用、每年的耗能量、能源费用,消费者或者项目开发者就可以很容易地作出正确的决定。例如北京的一些奥运场馆中,为减少能耗,设计者没有采用普通的新风系统和空调系统,而是经过多次优化设计,寻找最佳节能方案。为实现自然通风和改善室内环境,采用了智能电动窗,很好的解决了新风问题;在场馆空调设计中(包括“水立方”和“鸟巢”)都采用了由美国联合技术开利公司设计的节能空调系统。该系统通过热回收技术在空调系统中的应用,节能率为10%。该系统在冷水机组上加装了热回收装置,在空气处理机中采用了新型热管热回收装置,可以回收场馆排放总热量的50%,回收的热能一部分用于加热游泳池水和生活用水,另一部分用于加热新风。

二、现阶段推行优化设计运作困难的成因

1、政府主管部门对建筑节能优化设计监控不力

长期以来,主管部门对设计节能成果缺乏必要的考核与评价,有的仅靠图纸会审来发现一些简单问题,仅仅是一些新材料或空间布置的一些规定。缺乏对方案的节能性方面的系统审查要求。建筑节能设计首先是一个系统设计问题,它绝不是多项节能技术或者节能设备的简单累加,它需要定量化。例如,人们在市场上可以买到节能空调、节能玻璃、节能热水器、太阳能热水器、墙体保温材料等等,但是这些材料与设备如何使用、使用哪种型号、用量多少、所起到的作用是什么就需要通过量化整合来完成。集思广益,从多方面影响因素出发,以最低的投资、最佳的手段完成并达到节能设计目标。所以建设主管部门监管的同时,应增加人员配备和审查力度,对设计节能成果进行量化全面审查。

2、业主要求优化设计的意识不强

目前,业主往往把控制重心放在施工直接投资环节上,而对建成后使用运营成本及节能优化设计环节重视不够。其原因:一是对设计对投资影响的重要性认识不够,只看到搞施工招标,投标价要低于标底价、施工单位要让利等,殊不知选择一个优秀的设计单位进行设计方案的优化会带来更大的节约;二是对建筑节能的认识不到位,没有一个节能环保绿色建筑意识。

3、建筑节能优化设计的开展缺乏必要的压力和动力

由于缺少建筑节能优化设计与企业和公众的直接经济利益联系,使得节能工作缺少内在经济利益推动力,政府部门建筑节能管理工作还存在体制不顺、监管体系不健全,造成执法不严、监督不力,国家政策不配套,缺乏激励机制和工作力度。对一些国有投资建设项目,有关行政审批单位在审核初步方案时,只注重设计的建设规模和投资限额,对方案的经济合理性和节能性不做深入研究分析;另外,由于现在的设计收费是按面积或按造价的比例计取,几乎跟建筑节能和设计质量的优劣无关,导致对设计方案不认真进行节能分析,而是追求高标准,造成能源浪费。相反,设计单位即使花费了较多的人力、物力,优化了设计方案,给业主节约了投资,也不能得到应有的报酬,有时设计费反而变少了,从而挫伤了优化设计的积极性。

三、搞好优化设计的几点建议

1、主管部门应加强对建筑节能优化设计工作的监控

为保证建筑节能优化设计工作的进行,开始可由政府主管部门来强制执行,通过对设计节能成果进行全面审查后方可实施。政府主管部门不仅需在技术法规与标准相结合方面做出努力,而且还需要政府以技术法规的形式提出必须严格控制的最基本的技术指标、技术要求、功能要求,可以导则、指南、技术标准等标准类技术文件予以体现。利用主管部门的职能,总结推广标准规范、标准设计、公布合理的技术经济指标及考核指标,为优化设计的进行提供良好服务。建筑节能技术新规范逐步从控制单项建筑维护结构(如外墙、外窗和屋顶)的最低保温隔热指标,转化为控制建筑物的实际能耗。新建建筑必须出具建造耗材经济指标、采暖需要能量、建筑能耗核心值和建筑热损失计算结果,特别是建筑结构热损失计算结果。建筑能耗总量(包括供暖、通风和热水供应)和建造能耗值只有满足其对应的节能标准才被允许开工及竣工验收。在竣工时,建筑开发商必须出具相关部门的一份“能源消耗证明”,证明清楚地列出了该住宅每年的能耗,及节能等级。以上措施,必须逐步实施,特别是国有投资项目要先于执行。

2、以政策扶持拉动建筑节能优化设计

国家制定节能政策,并要求以多样化的经济激励等扶持举措,形成推动建筑节能的市场机制,推进建筑节能优化设计的推广。对建造节能建筑产品的要根据优化设计后节能程度给予政策和资金支持,减免税费等优惠措施,并可建立评价机制,对因建造节能建筑而超支部分资金,国家应给予无偿免息贷款或奖励机制,使建筑节能优化设计以行政手段为主转向以经济手段为主。

第2篇

【关键词】钢铁企业制氧站节能

中图分类号:C29 文献标识码:A 文章编号:

钢铁企业作为国民经济中最大的用氧部门,其在生产过程中需要使用大量的氧气、氮气和氩气,如氧气炼钢、高炉富氧、转炉溅渣护炉用氮、钢包底吹用氩等。因此,大中型钢铁企业一般都配备有一定规模的制氧站,制氧站在制取氧气的同时可以生产氮气和氩气等工业气体。在制氧生产中主要消耗的是电能,约占总能耗的80%;从总厂范围来说,制氧分厂是钢铁企业用电大户,约占20%以上。制氧站从选址、规模的确定到设备和管道的配置都需要进行优化设计,才能使工艺更先进,安全可靠性更高,能耗更低。

一、制氧站的规模确定

制氧站的规模需要根据炼钢、炼铁等用户的使用量及使用制度,绘制出用气平衡表,根据平均用气量来确定制氧站的规模。以下是某工程的氧氮氩平衡表。

氧、氮、氩的用量平衡表

通过上表可知,2×100万吨转炉冶炼、2×1280m3高炉富氧以及其它用户等共需氧气41000m3/h,纯度为99.6%;氮气40400m3/h,纯度为99.999%;氩气385m3/h,纯度为99.999%,为满足供应要求,需要建立二套20000m3/h空分装置。

2、制氧分离工艺的选择

目前,空气分离制取氧、氮等产品的方式有三种:变压吸附、膜分离和深冷法。前两种是常温下空气分离,第三种是低温下空气分离。

变压吸附与深冷法比较各有特点:首先,变压吸附流程简单,设备数量少,主要设备仅为鼓风机、吸附塔、贮气罐、真空泵和一些阀门;深冷空分装置流程较为复杂,主要设备包括空压机、预冷器、纯化器、换热器、膨胀机、空分塔、氧压机、氮压机等诸多设备。其次,变压吸附基建费用少,对厂房要求不高;深冷空分装置设备复杂,安装周期长,基建投资高。第三,变压吸附启动时间短,维修费用低;深冷空分装置操作较为复杂,启动时间长,维修费用多。第四,变压吸附产品单一,氧气纯度低(93%),产量少(一般在5000m3/h以下),不能生产氩;深冷法可以同时生产出高纯度的氧(99.6%)、氮(99.999%)、氩(99.999%),产量较高,而其液体产品的体积仅约为气体的八百分之一,所以产品非常便于经济的储存和运输。

膜分离技术与深冷法、变压吸附相比较,具有设备简单,启动时间短,投资少,由于不需要加压设备,故其简易程度超过了变压吸附;但也同样存在产量低,产品纯度低,氮气纯度仅为95%。

钢铁企业一般选用的是深冷法。

二、制氧站设计分析

1、制氧原理及改进措施

深冷分离工艺的基本原理是:空气经压缩、冷却和液化后,利用空气中氧、氮、氩沸点不同,采用多次蒸发、多次冷凝的方法进行精馏分离得到产品氧、氮、氩。再按不同用途将产品加压、贮存和输送供给用户。钢铁企业制氧站主体设备如图1所示。

图1 钢铁企业制氧站主体设备示意图

制氧站制取工业气体的能耗一般通过氧气的单位电耗来衡量。氧气单位电耗计算公式:

式中:N—吨氧耗电量,kWh/m3;

R—气体常数;

T—环境温度,K;

r—空气标准状态下重度,取1.293kg/m3;

P—加工空气压力(绝压);

V空—加工空气流量,m3/h;

V氧—产品氧气流量,m3/h;

ΔV—设备切换损失,m3/h;

η等—空压机等温效率;

η机—空压机机械效率。

制氧站的单位产品电耗,与工作压力的自然对数成正比,工作压力越低,单位电耗越小,因此尽可能地降低制氧设备的工作压力从而降低电耗。目前全低压流程的制氧装置已经被普遍应用。

此外,提高氧提取率,也即降低V空/V氧,单位电耗N也随之减少。当采用规整填料、全精馏无氢制氩技术,氧提取率可提高到99.8%,氩提取率可达80.7%,且制氩过程完全通过低温精馏来实现,使装置更安全可靠。当上塔采用填料塔后,能降低上塔阻力约0.02MPa,空压机轴功率可降低5%~7%。当采用带氧气增压器的空分流程,充分利用冷凝器的位能(即液柱高度),使出冷箱的氧气压力达到0.17~0.28MPa,从而使压氧电耗可降低0.03kW/m3左右。

我公司设计的某工程一期2万制氧、二期2万制氧均采用液氧自增压的方式,获得5000~7000Nm3/h,压力为55kPa的低压氧气,直接输送至炼铁区域进行机前富氧,这样即可选用1.5万Nm3/h的氧压机,大量减少了压氧能耗,每套2万机组年节约电量约8.0x106kWh。

我公司设计的某工程1.6万Nm3/h制氧采用了污氮气与增压空气进行换热的设计,节约了能耗。

2、减少氧气放散率

1)合理配置液体储槽和气体球罐。

液化装置的配置与使用是减少放散率、保证供气稳定性、安全性和增加制氧设备投资效益的一个重要手段。液化装置包括液氧、液氮和液氩储存及汽化系统。液化装置较空分设备容易开停,负荷可以增减,生产的液体产品可以进入后备汽化系统以保障气体供应,也可以进入市场销售,为企业带来可观的效益。液化装置的能力大小一般取决于氧气放散量的大小、氮气的富裕状况及对液体的需求量,一般以氧气总产量的5%~10%为宜,氧、氮、氩液化同时考虑。

氧气球罐的有效储量,需满足正常生产时的不均衡用量,包括转炉按一定规律用氧时的周期性高峰低谷的波动量和由于换出钢口、生产调度等原因造成不均衡用氧的富裕储量,同时还应考虑空分设备突然故障停止供氧时保证转炉仍能吹完一炉铁水所需的安全储量。转炉溅渣护炉是氮气用量波动较大的用户,每个冶炼周期吹氮时间为2~4min,因此氮气球罐的最小储量应能够满足其周期性波动的要求。

2)变负荷功能。

为了降低制氧单耗而增加氧气产量,但由于氧气需求的不连续性,氧气在部分时间会因用不了而放散掉。空分设备在选型时应该考虑变负荷功能。

装置自动调节负荷操作可以通过调节冷箱进口空气的流量,即靠增大或减少空气透平压缩机的排气量来实现。而空气透平压缩机通过控制其进口导叶,使轴功率随着排气量的变化而变化,可以实现变负荷操作平稳运行的同时达到降低能耗的目的。

三、制氧系统的优化节能

1、选择节电的设备及技术

从制氧装置规划起,就把节能作为工艺规划、设备选型的一个重要原则,把设备的价格、能耗、性能等放在一个系统中进行综合考虑。

空压机是空分装置中最大的耗能设备,也是制氧主厂房内最大件设备,在选择空压机时不仅要考虑设备投资,还应考虑电耗,业主使用习惯,最大件重量,气体进出口方式以及设备基础、对主厂房的要求等因素。例如,某工程一期2万制氧选用的是沈鼓设备,需设置8m高二层平台;二期2万制氧选用的是交大赛尔设备,需设置6.5m高二层平台;另某工程1#、2#2万制氧均选用的是陕鼓设备,设置在厂房地坪基础上;而某工程1.6万制氧Atlas的设备,设置在室外地坪基础上。

许多设备可利用变频技术节电,如循环水泵、循环氩泵等具备采用变频技术条件的设备,都采用变频技术。在循环水系统采用节电装置有效地控制了水泵的功耗。

我公司设计的某工程2x2.2万制氧分子筛系统加热器采用蒸汽加热器和电加热器配合,在蒸汽能满足供应的情况下,单独使用蒸汽加热器;蒸汽供应不足时,蒸汽加热器和电加热器配合使用,相比于单独使用电加热器,节能效果明显,每套2.2万机组年节约电量约3.74x106kWh。

2、提高设备作业率

任何原因造成制氧设备停机,启动后至少要空耗3 h以上的能耗才能进行产品生产。因此,制氧节能降耗一个最重要的方面就是稳定生产,那么零工况波动为运行的最高目标。与此同时,探索最佳的压缩机压力,加温活化的时间,上、下塔的压力,机组膨胀量,氧氮的纯度等因素对耗能的影响,找到最佳的工艺点。平时根据用户的使用情况及时地调整工况和开停压缩机,力争在满足生产使用的前提下,电耗最少。由于钢铁企业氧气、氮气用户的压力等级为两个,一是0.8 MPa以下的氧气、低压氮气,二是0.8~3.0 MPa的中压氧气、氮气。以前中压采用压缩的方法供应、低压采用中压节流的方法供应,势必造成能量损失,可采用中压和低压分开供应的方法,增设了低压氧气、氮气管网,有效地减少了氧气、氮气压缩的电耗,粗略估算每套2万机组年节约电量约16.6 x 106kWh。

一般制氧启动时间需48小时,如果能缩短启动时间,提前出氧,就可减少设备作为无用功时间,节约电耗。我公司设计的某工程1#、2#2万制氧在制氧启动积液过程中,当主冷凝蒸发器见液并排放干净后,将储槽或槽车中的液氧返供主冷,比正常开车缩短20小时,每套2万机组每次开车节电量约3.06 x 105kWh。

四、结束语

制氧机组单体设备的改进可以降低制氧机组本身电耗,而确定合理的制氧规模以及采取变负荷等相关措施可以最大限度地减少氧气的放散率,避免不必要的浪费。液体储槽、气体球罐以及管网的优化布置可以节约投资成本,并满足氧、氮、氩气体用量的不稳定性。

参考文献

第3篇

【关键词】冷库;节能技术;围护结构;制冷设备

随着综合国力的增强和人民生活水平的不断提高,我国冷库总容量和单库规模显著提升,食品冷藏行业进入快速发展时期。然而,建设冷库是一种投资较大、建设和使用期较长、资金回收相对较慢的项目。实现冷库最大经济效益的途径主要有两个方面,一是提高冷库周转利用率,二是通过节能降耗降低经营成本。

1.冷库围护结构设计中的节能

冷库是冷加工和食品保鲜行业中的高能耗行业,其中冷库围护结构的耗能约占整个冷库的30%,某些低温冷库围护结构的耗冷量高达制冷设备总负荷的50%左右。减少冷库围护结构的冷量损耗,重点是围护结构隔热层的合理设置。

1.1合理设计冷库围护结构的隔热层

隔热层所用材料及其厚度是影响传入热量的最重要因素,隔热工程的设计又是影响土建费用的关键。尽管冷库隔热层的设计要通过技术和经济两个角度来分析确定,但是实践证明,必须优先考虑隔热材料的“质优”,然后再考虑“价廉”,不能只看节省初期投资的眼前利益,要从长远的节能降耗考虑。近年来设计建造的组装式冷库,多数采用硬质聚氨酯(PUR)和挤塑聚苯乙烯(XPS)作隔热层。结合PUR和XPS隔热性能优越及砖混结构热惰性指标D值高的优点,采用土建式单面彩钢板复合内保温隔热层结构,是一种值得推荐的冷库围护结构隔热层的建造方式。

其具体做法是:采用砖混结构外墙,水泥砂浆抹平后作隔汽防潮层,然后内侧做聚氨酯隔热层。对于老冷库的大修改造,这是一种值得优选的建筑节能方案。

1.2冷库建设工艺管线的设计布局

制冷管道及照明动力管线等穿过隔热外墙是不可避免的,每多一处穿越点就等于在隔热外墙上多开一个缺口,而且处理复杂,施工操作困难,甚至可能留下工程质量的隐患。因此管道设计布置方案上,应尽可能减少穿越隔热外墙的孔数,并对穿墙处的隔热构造进行细致处理。

1.3冷库门设计及管理方面的节能

冷库门是冷库的配套设施之一,是冷库围护结构中最容易跑冷的部位。据相关资料介绍,低温贮藏库的库门在库外温度34 ℃,库内温度-20℃条件下开启1h,耗冷量就达1088kcal/h。

冷库内常年处于低温高湿以及温度、湿度频繁变化的环境中,低温库的内外温差通常在40~60 ℃之间。当库门开启时,由于库外空气温度较高,水蒸气压力大,而库内空气温度较低,水蒸气压力小,库外空气就会向库内流动。当库外高温、高湿的热空气通过冷库门进入库内后,大量的热湿交换会加剧冷风机或蒸发排管的结霜,导致蒸发效率的降低,从而引起库温波动,影响贮藏产品的质量。有文献表明,冷库门的性能不良可使能耗增加15%甚至更多。

2.冷库制冷设备的节能

2.1制冷压缩机的选择

制冷压缩机是制冷设备的心脏,它消耗的能量在整个制冷系统中占很大的比例。对于特定的制冷量,选择不同的压缩机直接关系到运行的能耗。在大中型冷库的建设中,液氨冷却螺杆制冷压缩机已有取代活塞式压缩机的趋势。

因此,必须正确估计冷库实际耗冷量的变化,掌握冷藏过程中放热量及外界气温、冷却水温和日常操作热量等耗冷量的变化规律,合理调整压缩机的开启台数,或通过卸载装置减少压缩机的工作缸数。

2.2冷凝器的选型

冷凝器是制冷工艺系统中的主要设备之一,在制冷循环中起着把压缩机排出的过热蒸气冷凝成液体的作用。冷凝器选型的合理与否,直接关系到制冷装置的经济性和能否正常使用。冷凝器选型过大,将使设备闲置,设备初期投资增大,配套费用增加;选型过小,又不能满足正常冷凝作用的需要。

蒸发式冷凝器充分利用水的汽化潜热带走更多的冷凝热,是一种高效节能的换热设备,具有传热效率高、结构紧凑和安装方便等优点。针对当前节水、节电在国民经济发展中的紧迫性和重要性,因地制宜地推广蒸发式冷凝器的使用已势在必行。

2.3蒸发器的选型

建设大中型低温冷库的蒸发器选型,应尽量采用传统排管式蒸发器。冷库使用冷排管可实现温度易控,同时又没有电机能耗的双重效果。

压缩机停机时,冷排管内的低温氨液可以蓄冷,库温和蒸发温度波动较小且保持温度延续时间长。由于冷排管的蒸发面积比冷风机蒸发管组的蒸发面积大得多,所以增大传热面积是最有效的强化传热途径之一。虽然冷排管与冷风机相比一次性投资大一些,但运行费用却相对减小。同时使用冷排管可简化制冷系统,便于系统的维护和管理。

3.冷库运行管理中的节能

3.1准确及时调节制冷系统

制冷系统在实际运行中,由于工况条件是不断变化的,只有依靠冷库管理人员的精心操作并准确地调节制冷设备的运行,才能使制冷系统始终处在最理想的工作状态,达到高效节能的效果。

3.2合理利用库房,节能减耗

冷藏间的耗电量是按冷藏间耗冷量的多少来计算的,通常包括两部分:一是货物冷却和冷藏时的耗冷量;二是冷藏间本身(即围护结构)及操作管理的耗冷量。节约用电的关键在于冷藏间的利用率,利用率低的冷藏间耗冷多,耗电也就多。在实际操作中,由于压缩机所配备的电动机功率是按该机制冷能力选定的,也就是库房的耗冷量小于制冷机的制冷能力。冷库在淡季运行时,由于冷藏间存放的货物较少,压缩机运转是“大马拉小车”,浪费了电能。因此,在淡季时可将几个冷藏间内的货物按贮藏温度及时并库,以减少能耗。

3.3冷库内照明系统的节能冷库照明应在安全、科学、合理的基础上,从节能和环保的角度出发

根据冷库间的面积、高度及库房温度等综合考虑。冷库内的照明一般集中在工作区域内。应在保证操作人员安全的情况下做到及时关灯,以减少库房的热负荷及电能消耗。同时要尽量采用高效低耗耐压的照明灯具以减少灯具的更换频率。LED照明系统具有环保省电、照度均匀、低温时发光效率良好及供电效率高的优势,是一种极有前景的新型光源,也是今后冷库内照明系统的发展方向。

3.4定期放油、除垢和放空气,确保良好热交换效果

资料显示,当蒸发器盘管内有0.1mm厚的油膜时,为保持设定的温度要求,蒸发温度就要下降2.5℃,耗电量增加10%以上;当冷凝器内的水管壁结垢达1.5mm时,冷凝温度就要比原来的温度上升2.8 ℃,耗电量增加9.7%;当制冷系统中混有不凝结气体,其分压力值达到0.196MPa时,耗电量将增加约18%。由此可保鲜与加工见冷库制冷系统定期放油、除垢和放空气的重要性。

4.结束语

冷库的节能是一项系统工程且具有很大的潜力,从大的方面来讲,一是冷库的合理设计,二是冷库的科学管理。在工作实践中,冷库的设计要周密严谨,运行管理要科学合理,严格把关,通过多种节能途径,即可取得良好的综合节能效果。

【参考文献】

第4篇

【关键词】节能车;车身;优化

【Abstract】This text is on the background of China`ECO-CAR Racing, On the premise of the racing`rule, to analysis and optimize the body from the material, frontal area drag coefficient. By simulation the wind tunnel experiment to ensure the shape and size of the model and improve the vehicle performance by cooperate other parts.

【Key words】Fuel-efficient cars; Bodywork; Optimization

1 项目背景

节能竞技大赛,是使用Honda低油耗摩托车的4冲程发动机,选手们根据自己的想法动手设计、制作赛车,创造出表达环保主题的车身,限用1升汽油行驶更远的距离,并最大限度地降低废气排放,是挑战节能极限的一项竞技赛事。人们不仅可以感受到“创造”与“交流”的乐趣,同时还可以体会到“低油耗,少减排就是环保”。

我校于2010年开始参加节能车大赛以来,成绩保持良好,特别是2012年第六届大赛上以635.226km/L的成绩力压众多高校获得全国第三。车身的方式也由半包式逐渐发展到全包式,各项参数指标稳步提升。

2 提升车身性能的思路

顾名思义节能车大赛无非是节能环保,要做到节能就必须降低油耗,所以车身的质量和风阻系数就尤为重要。既要质量轻又要满足刚度和强度的需求又要有可塑性,这样的车身材料就是我们节能车车身的首选。在材料满足的条件下要做的就是设计出拥有完美曲线的车身形状。

3 优化车身要进行的工作

3.1 确定制作基本流程

1:打印1:1图纸

2:切割相应的木板

3:按序号连接木板构建空间框架

4:通过AB胶及石膏将与木板相互位置固定

5:用部分泡沫填充空间框架

6:在泡沫的表面添加石膏,用石膏来塑性

7:制作并打磨石膏车身曲面

8:在打磨好的车身曲面上涂腻子粉,原子灰和脱模蜡

9:在石膏模型表面铺玻璃钢

10:将制作处理好的玻璃钢内表面整理清洁

11:在玻璃钢车身的内表面涂抹原子灰,脱模蜡

12:用真空灌注的方法在玻璃钢的内表面铺碳纤维

13:对碳纤维表面进行打磨,开窗户

14:对有机玻璃进行软化处理,制作满足形状要求的窗户

15:碳纤维车身表面喷漆

16:制作车身内部相关内饰

3.2 确定车身形态

车身形态分为半包式和全包式,其中全包式制作较为复杂,但整体效果突出车身形式选用方面主要由风阻系数Cd和迎风面积A决定。资料显示,Cd*A每减小1%,油耗降低0.7%;车重每减小1%,油耗可降0.7%。

3.3 确定车身外形

研究表明,当一辆轿车以80km/h的时速前进时,有60%的耗油是用来克服风阻的。在时速200km/h以上时,空气阻力几乎占所有行车阻力的85%。即使风阻系数只相差0.01,也会给油耗带来明显的变化。而一旦风阻系数降低10%,那么燃油的消耗量至少可以节省7%。

3.4 确定车身材料

根据经验积累和参数对比,我们选出最适合制作节能车车身的材料――碳纤维。碳纤维作为21世纪最高端的新型可塑性材料官费的应用在航空航天以及新能源领域,下面就对碳纤维材料进行全方面分析。

碳纤维的特性

碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下:

(1)轻质、高强度、高模量

碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2GPa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。

(2)热膨胀系数小

绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10 -6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。

(3)导热性好

通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。

(4)耐化学腐蚀性好

从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。

(5)耐磨性好

碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。

(6)耐高温性能好

碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。

(7)突出的阻尼与优良的透声纳

利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。

(8)高X射线透射率

发挥此特点已经在医疗器材中得到应用。

(9)疲劳强度高

碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

3.5 制作模型

我们的车身要保证外形尺寸的一致性,因此对模型的要求非常苛刻,在做模型之前一定要确定拔模角度。首先要用石膏制作出和所建模型一直的石膏凸模,再在凸模的基础上用玻璃纤维做出凹模。

模型的好坏直接影响到车身的成败,如果模型制作不仔细,那么整个车身的制作都会前功尽弃。

3.6 车身制作

当凹模做完之后,模型制作就基本完成了,接下来就是制作碳纤维车身了。

首先要在模型上均匀的涂抹一层脱模剂,然后把碳纤维布扑在模型上,接着涂刷或浇注调好比例的环氧树脂(树脂与固化剂的质量比例为100:30),然后将制作好的真空袋密封在凹模上,注意一定要密封,排好真空管连接真空泵,最后打开真空泵电源进行“抽脂”行动,待树脂半固化状态就可以关掉电源静等20小时后就可以脱模了,脱模后再进行修整,车身雏形就完成了。

3.7 开窗

节能车内部空间较小,视野对于车手非常重要,可以说车窗是为车手量身定制的,确定其大小的时候要车身坐在车里,满足车手的最大视野画出边界,然后进行优化。

3.8 喷漆

喷漆是画龙点睛的一步,吸不吸引眼球就看喷漆了,车身的脸面全由这一步体现。

4 展望

我希望在技术条件允许的情况下将车身做成单体壳式,车身和车架一体,这样就避免了配合误差的问题,还可以将上车身做成“剪刀门”的形式,让车手能自己轻松进出。

【参考文献】

[1]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2007.

[2]余志生.汽车理论[M].北京:机械工业出版社,2000.

[3]何耀华,杨灿,王桂姣.基于ADAMS 的节能车模态分析[J].天津汽车,2008(12).

[4]王羽,李陆山,顾方.挑战一升 环保一生:记2009 年第3 届Honda中国节能竞技大赛[Z].

第5篇

关键词:空调系统;节能优化;消耗

智能建筑节能是世界性的大潮流及大趋势,也是中国改革与发展的迫切要求,是21世纪中国建筑事业发展的一个重点。节能与环保是实现可持续发展的关键。从可持续发展理论出发,建筑节能的关键又在于提高能量效率,所以无论制订建筑节能标准还是从事具体工程项目的设计,都应把提高能量效率作为建筑节能的着眼点。

一、暖通空调概述

1.暖通空调的工作原理

暖通空调的主要工作原理是制冷剂在空调制冷机组内的蒸发器中与冷冻水进行热量交换发生气化,这一过程会使冷冻水的温度降低,被气化后的制冷剂在空压机的作用下,会形成高压、高温的气体,当气体流经制冷机组的冷凝器时,则会被来自冷却塔的冷却水所冷却,从而是气体转变为低压、低温的液体,与此同时,被降温后的冷冻水经由水泵被送至空气处理机的热交换器中,随后与混风进行冷热交换形成冷风源,最后经由送风管路送入到各个房间。通过这样的循环过程,在夏季房间内的热量会被冷却水带走,流经冷却塔后释放到空气当中。

2.空调供水系统

通常情况下,冷冻水系统内的冷冻水管道均为循环式系统;变流量系统按照组成装置的不同,可分为相对变流量和真正变流量两种,其中真正变流量可以充分发挥变流量系统的节能潜力。

3.空气处理单元

在空气处理单元中,新风与部分回风经混合后形成混风,当混风经由热交换器冷冻水进行热交换后则形成送风。冬季时,混风能够吸收能量,从而是温度升高,夏季时,随着混风温度降低,送风进入室内后会与室内的空气进行热量的传递,最终将温度调节至房间所需的设定值。此时房间内的气体在排风机的作用下与新风混合后,重复上诉过程进行循环。由于混风和冷冻水的热交换过程是在热交换器中进行的,因此,热交换器属于暖通空调空气处理单元中较为重要的组成部分。当热交换器的工作状况处于部分负荷时,与设计工况是不同的,而在实际使用中,大部分时间热交换器都是处于部分负荷状态,也就是说其基本都处在非设计工况下工作,所以在进行设计时应尽量了解热交换器的这一特点。

二、暖通空调工程设计优化的重要性

其一,对暖通空调工程进行优化设计,不仅可以满足人们对工作和生活环境舒适性的要求,而且还可以使工作效率和生活质量有所提高;其二,由于暖通空调工程属于整个建筑中能耗较高的部分,所以对其进行优化设计,可以起到节约能源、提高能源利用率的作用;其三,随着直接数字控制器(DDC)、变频技术以及能源管理控制系统等的广泛应用,使暖通空调工程的优化设计策略和控制技术相辅相成,在节能降耗的同时,能够更好的对暖通空调系统进行指导和控制;其四,基于大部分暖通空调工程在设计之初,没能很好考虑季节变化、时间以及房屋的朝向等问题引起的冷负荷变化,致使这样的设计难免会造成能源的浪费,而对暖通空调工程进行优化设计后,可以从根本弥补这一缺陷,并且还能降低事故的发生几率;其五,由于在进行暖通空调设备选型时,通常都是按照设备的最大负荷进行计算的,并采用固定工作时间的方式运行。但是在大多数情况下,暖通空调都不是处于满负荷运行的,同时由于多种因素的影响,如阳光照射、建筑外部环境的温湿度、房间内部的负荷变化等,一旦采用固定工作时间运行,必然会导致设备的使用效率低下,使能源大量浪费。因此,为了调整空调系统的运行时间,作为施工单位,对暖通空调的运行比较了解,就必须配合设计人员对暖通空调工程进行优化设计,从而确保空调系统的运行效率,达到节约能源的目的。

三、暖通空调工程的优化设计方法

1.控制策略的优化

由于空气处理机的直接数字控制器(DDC)基本都是采用PTD进行控制的,所以选用一个较为合适的PTD参数能够起到促进空调系统稳定运行的作用。PTD的系数高,可以使室内温度较快的达到预定值,反之这一过程会较慢,但也并不是说PTD的系数越高就越好,一旦系数太高时很容易引起DDC控制器失稳。虽然PTD可以解决大多数场所的空调控制问题,但是有些特殊场所仅靠较高的PTD系数提高空调系统对负荷变化的响应速度是很难解决问题的,比如影剧院等大热惯性场所,对于这样场所可采用双级控制,即将温度传感器分别安装在室内和送风道上,由主DDC控制器完成室内温度的设定,而水阀的驱动则可由副DDC按照主DDC以及风道传感器的指令来完成,基于风道温度变化的速度要快于房间内温度的变化,采用这样的控制方式可以加速空调系统对温度波动的响应。在实际工程设计中,可以根据不同情况的需要,选择不同的优化控制,从而达到最优的效果。如,写字楼、大型商场等场所,夏、秋季在清晨时通过控制程序启动空气处理机,并利用室外的凉风对室内进行全面换气预冷,这样做不进可以节约能源消耗,而且还可以提高室内空气的质量。

2.控制权的优化设计

在某些特定的场合,如会议室,如果可以将空调或是通风系统的参数设定功能放置在现场,那么则能够更加符合用户的需要。然而DDC本身却并具备这样的功能,必须添设专门的部件才能实现。为了实现这一功能必要时可以添设VRV控制面板的设定器,它可以给用户带来极大的方便和舒适性。

3.DDC的优化

由于DDC控制系统的处理能力是不同的,所以应根据各个场合不同的需要,选择合适处理能力的DDC,如热力站监控点、冷冻机房等密集场合应优先考虑采用大型的DDC控制器,以减少控制器间的通讯和故障发生的频率;对于通风机、新风机、空气处理机等通常采用中型或小型的DDC即可满足使用需要。目前,可编程逻辑控制器(PLC)的发展速度较快,其应用范围也越来越广泛,因此,在暖通空调现场设备优化控制工程中,可适当加以采用,优化效果也是比较明显的。

4.控制网络的优化设计

在满足灵活性和可扩展性的基础上,空调系统控制网络的拓扑结构应尽量清晰、简化,无论是采用RS485总线或是LonTalk总线的控制网络都应如此。由于分级多、分支多的网络管理较为复杂,而且可靠性也比较低,虽然LonTalk总线在理论上能够组成任意的网络拓扑结构,但是这种设计具有很大的随意性,一旦运用不当,在工程实践中可能会有一定的技术风险,从而使空调系统的成本增加。因此,在没有特殊要求的工程中英尽可能使用RS485总线的控制网络,并采用手拉手环网的布线方式。

5.BAS监控中心

BAS监控中心主要负责的是监控整个空调、通风以及动力系统的工作状态,通常与安保监控和消防控制等系统共用一间机房,而该机房一般都离冷冻机房、锅炉房较远,在这里对空调系统中的关键设备进行远程操作显然是不合适的,因此,建议在冷冻机房和锅炉房现场控制室另设一台监控分站,并由该分站负责监冷冻机、锅炉监控功能,同时该分站授权局限为冷热源设备。

五、结论

能源目前显得比较短缺,特别是现在使用空调的人逐年增多。空调自身的含氟制冷剂本身就会导致臭氧空洞的形成,而且空调工程的高能耗问题还会产生更多的二氧化碳,引发一系列的环境问题。这就更要求我们去寻求一条节能的道路,来适应社会的发展。因此,研究空调的节能问题显得尤为迫切且重要。

参考文献

[1] 孙亚林.空调用冷水机组部分负荷性能与空调系统的匹配分析[J].科技资讯,2010(11).

第6篇

1保温隔热

1.1现状分析建筑墙体主要为240黏土砖砌筑墙体,外墙面层为水泥砂浆抹面涂料。墙体较薄且无任何保温层,在夏季白天难以阻挡该地区强烈的太阳光,导致大量热量透射而入;到夜间获取的热量难以消散,形成对室内的二次辐射,使得室内温度持高不下。冬季轻薄的墙体又成为热传递的最佳通道,将热量由室内传递到室外,导致室内热量的严重损失。屋顶为普通水泥板架空隔热屋面,此种做法相对老套,保温、隔热效果无法满足现在住宅建筑的使用要求。调查建筑中的门窗及阳台窗基本上都为低档铝合金作为骨架材料的单玻窗,所用玻璃为蓝色透明玻璃,开启方式为推拉,此种方式增加了该建筑的能源消耗。

1.2相关案例西安首创国际城北区采用的保温隔热技术:1)选用AJ聚苯颗粒保温砂浆和聚苯保温板,墙体穿上“衣服”。2)采用塑钢中空双层玻璃窗,达到隔热、隔音和保温效果。3)选用名牌厂家生产的保温隔音防盗门。4)在屋顶和阳台使用聚苯颗粒保温砂浆。由此,节能效果达到节能50%的国家标准。

2改造优化设计

针对调查建筑当前存在的问题,结合对国内外相关案例的分析,运用生态住宅的设计方法,提出相应的改造设计措施,达到节能的目的。

2.1通风改造优化设计自然通风是住宅建筑的重要影响因素之一,在住宅设计领域中结合环境,达到自然通风节能的效果尤为重要。结合建筑单体设计,巧妙设置门窗,门窗对开,形成穿堂风,有效地调节了室内通风效果。丰富窗户形式,设置多向调节窗户加大其通风能力,自然通风量则通过竖向空间的窗户面积大小来控制。屋顶安装利用风力的简单机械装置,抽低楼层的凉风至高楼层降低室内温度,加强竖向空间的拔风作用,提高室内60%的通风能力。加强各楼层之间风的流动,在竖向空间顶端设置蓄热墙吸收房间热能,排除室内浊气。

2.2遮阳改造优化设计窗的遮阳是必不可少的,在闭窗情况下有无遮阳,室温最大差值达2℃,平均差值达1~4℃。理论上讲,室外遮阳效果比单层玻璃窗的透过能量下降88%。但针对该地区来讲,如果用遮阳板固然可抵挡一部分夏季强烈的日光,但进入漫长的低日照时期时,室外的遮阳设置使室内不得不只采用灯光照明,特别是在阴雨天或冬季这种需要大量阳光进入的季节,遮阳反而变成了一种障碍。在建筑中设置百叶遮阳构件,并将百叶遮阳构件一分为二,利用上部的百叶作为反射构件,通过室内顶棚进行漫反射增加室内照度;下部挡掉过量的太阳光。这种方式作为朝南建筑的遮阳方式,朝西建筑由于太阳高度角较低,可采用垂直遮阳来解决此问题。

2.3隔热改造优化设计

2.3.1墙体与屋顶围护结构传热的热损失占整个建筑物热损失的70%~80%,外墙是建筑物围护结构的重要组成部分。加强调查建筑的薄弱围护结构(外墙)的保温隔热能力尤为重要。在改造中,建筑物的主要围护结构、屋顶的保温节能材料采用AJ建筑保温隔热聚合物砂浆。隔热效果好、导热系数低的AJ建筑保温隔热聚合物砂浆含有陶瓷空心微粒,从而有效地阻止了能量的传递,起到节能的作用。在外墙外保温时该材料还设置防裂防漏层,既防裂纹又防漏水。屋顶的保温设计可选用AJD—Ⅱ型聚苯颗粒保温材料为保温隔热材料,同时可种植绿化来改善保温隔热的效果。

2.3.2门、窗由于空气渗透和门窗的使用带来了门窗的热损耗,为减少能耗,则需:1)合理窗墙比:以建筑规范为准则,以该地区的实际条件为依据,合理地调整窗户和墙体的比例。2)强化密封性:合理选择门窗的类型和其他相关配套材料。3)提高保温性:门窗框料可采用PVC型材与钢衬料制成,玻璃采用中空双层玻璃,门芯填充复合保温材料,既防盗又保温隔热。

2.4有效利用太阳能生态住宅设计方法在遵循高效率、低造价、易控制、好维修原则的前提条件下,合理地利用太阳能,降低住宅建筑的人工能耗。结合该地区的气候条件,选取适合调查建筑的改造方式,最大程度地利用自然能源,降低住宅建筑能耗,太阳能的利用方式见图1。

3结语

第7篇

关键词:锅炉 节能 环保 优化设计

1.引言

当前,关于锅炉生产的节能性和环保性,锅炉生产企业正加大研发力度,试图通过优化设计,将锅炉的节能和环保功能改造升级,以更好地适应消费者对节能和环保的消费需求。节能环保的优化设计,这是技术含量相对较高的研究课题,也是需要锅炉生产企业投入大量研发力量和资源的重要成本支出。不过,从未来市场竞争的角度考虑,加快锅炉生产转型升级,提升锅炉的科技含量、人文因素,是大有必要的。本文将重点围绕如何采取有效措施,在锅炉生产过程中,将锅炉的节能性和环保性提升,提出一些前瞻性、科学性、可操作性的对策参考。当然,这些对策参考,只是笔者的一家之言,也是方向性、理论性、原则性的一些分析探讨,能否最终转化为操作流程,从而产生经济效益和社会效益,有待企业结合自身生产实际,进行理论和实践的结合,推动锅炉生产的转型升级。

2.锅炉节能环保优化设计的原理分析

锅炉要实现节能环保,主要是通过锅炉燃料的优化选择和燃烧方式的优化组合实现的。这是锅炉节能环保优化设计最基本的理论基础。在优化选择锅炉燃料方面,固体燃料和液体燃料是传统常用的燃料,比如,煤、石油等系列制成品,这些燃料的显著特征就是燃烧能力强,但是容易产生大量的有害物质,对大气和生活环境造成污染。因此,要实现锅炉的节能环保,就要采用气体燃料。在设计锅炉时,就要根据气体燃料的特点进行装置设计和生产。在燃烧方式的优化组合方面,除了要充分达到燃烧的必备条件外,比如有优质的燃烧物、有高效的助燃物、温度能够达到燃点,等等,还要能够实现燃料和空气的深度融合。在此基础上,对燃烧方式进行优化选择。比如,对于中小型锅炉而言,适宜采用层状燃烧;对于节能环保要求不高的,可以采用悬浮燃烧方式;而沸腾燃烧最节能环保,这是今后燃烧方式的重点。

3.锅炉节能环保优化设计的措施分析

节能环保优化设计,可采用的具体措施有很多种。但从大类分析,一般有两类:第一类是通过安装节能环保设备。一般可以选择在油泵燃油室之间或者油咀之间安装节能环保设备。安装节能环保设备,比如常见的节能器,这可以促使碳氢化合物分子结构发生改变,从而让分子之间的距离拉大,把燃料的粘度降下来,这样就能够在燃烧前雾化燃料油,让燃料油更加充分地燃烧,大幅降低鼓风量,并把烟道的热量损失降到最低,从而实现节能环保的目的。实践证明,安装节能环保设备,能够将燃烧产生的一氧化碳、碳氢化合物等有害物质大幅降低,并大幅降低废气的含尘量。第二类是通过采用节能环保材料。锅炉生产商要严格按照国际节能标准,在生产锅炉时保证达到降耗标准。这就需要生产商采用节能环保的原料,不能为了降低生产成本,采购一些低质、耗能的材料。当然,锅炉能否实现节能环保的目标,这也需要使用单位树立节能环保意识,在采购锅炉时在考虑经济成本的同时,要考虑社会效益和生态效益,不能为了降低成本,就采购一些节能环保明显不达标的锅炉。当然,也要严格按照节能环保的要求进行锅炉操作,将节能环保的锅炉综合效益显现出来。

4.锅炉节能环保优化设计的过程分析

根据上述节能环保的主要依据和因素,笔者认为,节能环保优化设计方案的制定,主要要做好七个方面的工作,即实时性能、耗差分析、实时出力、出力优化、考核统计、数据采集、性能计算。这七个方面的优化设计是一个完整的系统,其中,先从对性能的实时动态掌握开始,经过耗能差别的分析、燃料出力情况的调控后,对获取的数据进行考核统计,最后就可以计算出锅炉的性能如何。在此基础上,对节能环保优化设计的模式进行研究确定。一般有两种模式:一种是通过锅炉的优化控制系统,将节能环保的优化结果提供给负责锅炉运行人员。需注意的是,这种优化结果不是优化控制系统自行生成的,这需要人工进行操作。另一种则是将优化结果进行下载,这种下载是优化控制系统自带功能,并需锅炉有储存数据功能的装置。需要指出的是,要实现以上自动化的全程控制,一个基本的条件是,离不开计算机技术、控制技术以及通讯技术的支撑。因为,一整套节能环保优化控制系统,需要有一个中央处理系统,对各个环节进行控制和调整,将锅炉运行过程的各种信息、数据进行集中传送、处理和分析,第一时间让专业人员知晓,从而人工做出判断和采取必要措施,让节能和环保的性能正常发挥出来。

5.结语

应该说,随着时代的发展,节能环保技术的不断革新进步和人们对节能环保的渴求越来强烈。在这样的大背景下,推进锅炉节能环保的优化设计,这是大势所趋,也是具备了充足的发展条件。尤其是,针对我国现有的节能环保技术,根据锅炉生产、使用的现实状况,对节能环保优化设计的措施和流程进行改进和创新,具有十分重要的现实意义。未来几年,锅炉的生产制造将朝着清洁、节能、环保的方向发展,这就需要广大锅炉生产商和供应商,大力推进锅炉生产技术转型升级,大力投入科技研发力度,创新节能环保设计流程,将锅炉的节能性能和环保性能不断提升,从而不断开拓和抢占市场份额,满足人们对节能环保的需求。

参考文献:

[1]李静.浅谈热电厂锅炉节能的重要性[J].才智. 2010(19)

[2]高永地,梁德印,张华东.重油催化裂化余热锅炉节能技术改造[J].石油炼制与化工. 2011(05)

[3]唐禹明.工业锅炉节能减排分析及对策[J].应用能源技术.2011(02)

[4]周月华,孙丽娟.工业燃煤锅炉节能与环保技术探讨[J].黄河水利职业技术学院学报. 2011(02)