欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

高等函数的概念范文

时间:2024-03-05 16:28:59

序论:在您撰写高等函数的概念时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

高等函数的概念

第1篇

三角函数与解三角形

第九讲

三角函数的概念、诱导公式与三角恒等变换

2019年

1.(2019北京9)函数的最小正周期是

________.

2.(2019全国Ⅲ理12)设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:

①在()有且仅有3个极大值点

②在()有且仅有2个极小值点

③在()单调递增

④的取值范围是[)

其中所有正确结论的编号是

A.

①④

B.

②③

C.

①②③

D.

①③④

3.(2019天津理7)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则

A.

B.

C.

D.

4.(2019全国Ⅱ理10)已知α∈(0,),2sin

2α=cos

2α+1,则sin

α=

A.

B.

C.

D.

5.(2019江苏13)已知,则的值是_________.

6.(2019浙江18)设函数.

(1)已知函数是偶函数,求的值;

(2)求函数

的值域.

2010-2018年

一、选择题

1.(2018全国卷Ⅲ)若,则

A.

B.

C.

D.

2.(2016年全国III)若

,则

A.

B.

C.1

D.

3.(2016年全国II)若,则(

)

A.

B.

C.

D.

4.(2015新课标Ⅰ)

A.

B.

C.

D.

5.(2015重庆)若,则=

A.1

B.2

C.3

D.4

6.(2014新课标Ⅰ)若,则

A.

B.

C.

D.

7.(2014新课标Ⅰ)设,,且,则

A.

B.

C.

D.

8.(2014江西)在中,内角A,B,C所对应的边分别为,若,则

的值为(

)

A.

B.

C.

D.

9.(2013新课标Ⅱ)已知,则(

)

A.

B.

C.

D.

10.(2013浙江)已知,则

A.

B.

C.

D.

11.(2012山东)若,,则

A.

B.

C.

D.

12.(2012江西)若,则tan2α=

A.−

B.

C.−

D.

13.(2011新课标)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=

A.

B.

C.

D.

14.(2011浙江)若,,,,则

A.

B.

C.

D.

15.(2010新课标)若,是第三象限的角,则

A.

B.

C.2

D.-2

二、填空题

16.(2018全国卷Ⅰ)已知函数,则的最小值是_____.

17.(2018全国卷Ⅱ)已知,,则___.

18.(2017新课标Ⅱ)函数的最大值是

.

19.(2017北京)在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则=___________.

20.(2017江苏)若,则=

.

21.(2015四川)

.

22.(2015江苏)已知,,则的值为_______.

23.(2014新课标Ⅱ)函数的最大值为____.

24.(2013新课标Ⅱ)设为第二象限角,若,则=___.

25.(2013四川)设,,则的值是_____.

26.(2012江苏)设为锐角,若,则的值为

.

三、解答题

27.(2018江苏)已知为锐角,,.

(1)求的值;

(2)求的值.

28.(2018浙江)已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点.

(1)求的值;

(2)若角满足,求的值.

29.(2017浙江)已知函数.

(Ⅰ)求的值;

(Ⅱ)求的最小正周期及单调递增区间.

30.(2014江苏)已知,.

(1)求的值;

(2)求的值.

31.(2014江西)已知函数为奇函数,且,其中.

(1)求的值;

(2)若,求的值.

32.(2013广东)已知函数.

(1)

求的值;

(2)

若,求.

33.(2013北京)已知函数

(1)求的最小正周期及最大值;

(2)若,且,求的值.

34.(2012广东)已知函数,(其中,)的最小正周期为10.

(1)求的值;

(2)设,,,求的值.

专题四

三角函数与解三角形

第九讲

三角函数的概念、诱导公式与三角恒等变换

答案部分

2019年

1.解析:因为,

所以的最小正周期.

2.解析

当时,,

因为在有且仅有5个零点,所以,

所以,故④正确,

因此由选项可知只需判断③是否正确即可得到答案,

下面判断③是否正确,

当时,,

若在单调递增,

则,即,因为,故③正确.

故选D.

3.解析

因为是奇函数,所以,.

将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为,即,

因为的最小正周期为,所以,得,

所以,.

若,即,即,

所以,.

故选C.

4.解析:由,得.

因为,所以.

由,得.故选B.

5.解析

由,得,

所以,解得或.

当时,,,

.

当时,,,

所以.

综上,的值是.

6.解析(1)因为是偶函数,所以,对任意实数x都有,

即,

故,

所以.

又,因此或.

(2)

.

因此,函数的值域是.

2010-2018年

1.B【解析】.故选B.

2.A【解析】由,,得,或

,,所以,

则,故选A.

3.D【解析】因为,所以,

所以,所以,故选D.

4.D【解析】原式=.

5.C

【解析】

=,选C.

6.C【解析】

知的终边在第一象限或第三象限,此时与同号,

故,选C.

7.B【解析】由条件得,即,

得,又因为,,

所以,所以.

8.D【解析】=,,上式=.

9.A【解析】因为,

所以,选A.

10.C【解析】由可得,进一步整理可得,解得或,

于是.

11.D【解析】由可得,,

,答案应选D.

另解:由及,可得

,而当时

,结合选项即可得.

12.B【解析】分子分母同除得:,

13.B【解析】由角的终边在直线上可得,,

.

14.C【解析】

,而,,

因此,,

则.

15.A【解析】

,且是第三象限,,

.

16.【解析】解法一

因为,

所以,

由得,即,,

由得,即

或,,

所以当()时,取得最小值,

且.

解法二

因为,

所以

,

当且仅当,即时取等号,

所以,

所以的最小值为.

17.【解析】,,

①,

②,

①②两式相加可得

,

.

18.1【解析】化简三角函数的解析式,则

,

由可得,当时,函数取得最大值1.

19.【解析】角与角的终边关于轴对称,所以,

所以,;

.

20.【解析】.

21.【解析】.

22.3【解析】.

23.1【解析】

.,所以的最大值为1.

24.【解析】,可得,,

=.

25.【解析】

,则,又,

则,.

26.【解析】

因为为锐角,cos(=,sin(=,

sin2(cos2(,

所以sin(.

27.【解析】(1)因为,,所以.

因为,所以,

因此,.

(2)因为为锐角,所以.

又因为,所以,

因此.

因为,所以,

因此,.

28.【解析】(1)由角的终边过点得,

所以.

(2)由角的终边过点得,

由得.

由得,

所以或.

29.【解析】(Ⅰ)由,,

得.

(Ⅱ)由与得

所以的最小正周期是

由正弦函数的性质得

,

解得,

所以的单调递增区间是().

30.【解析】(1),

;

(2)

.

31.【解析】(1)因为是奇函数,而为偶函数,所以为奇函数,又得.

所以=由,得,即

(2)由(1)得:因为,得

又,所以

因此

32.【解析】(1)

(2)

所以,

因此=

33.【解析】:(1)

所以,最小正周期

当(),即()时,.

(2)因为,所以,

因为,所以,

所以,即.

34.【解析】(1).

(2)

第2篇

三角函数与解三角形

第九讲

三角函数的概念、诱导公式与三角恒等变换

2019年

1.(2019北京文8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,

是锐角,大小为β.图中阴影区域的面积的最大值为

(A)4β+4cosβ

(B)4β+4sinβ

(C)2β+2cosβ

(D)2β+2sinβ

2.(全国Ⅱ文11)已知a∈(0,),2sin2α=cos2α+1,则sinα=

A.

B.

C.

D.

3.(2019江苏13)已知,则的值是

.

2010-2018年

一、选择题

1.(2018全国卷Ⅰ)已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则

A.

B.

C.

D.

2.(2018全国卷Ⅲ)若,则

A.

B.

C.

D.

3.(2018北京)在平面坐标系中,,,,是圆上的四段弧(如图),点在其中一段上,角以为始边,为终边,若,则所在的圆弧是

A.

B.

C.

D.

4.(2017新课标Ⅲ)已知,则=

A.

B.

C.

D.

5.(2017山东)已知,则

A.

B.

C.

D.

6.(2016年全国III卷)若,则=

A.

B.

C.

D.

7.(2015重庆)若,,则

A.

B.

C.

D.

8.(2015福建)若,且为第四象限角,则的值等于

A.

B.

C.

D.

9.(2014新课标1)若,则

A.

B.

C.

D.

10.(2014新课标1)设,,且,则

A.

B.

C.

D.

11.(2014江西)在中,内角A,B,C所对应的边分别为若,则的值为

A.

B.

C.

D.

12.(2013新课标2)已知,则

A.

B.

C.

D.

13.(2013浙江)已知,则

A.

B.

C.

D.

14.(2012山东)若,,则

A.

B.

C.

D.

15.(2012江西)若,则tan2α=

A.−

B.

C.−

D.

16.(2011新课标)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=

A.

B.

C.

D.

17.(2011浙江)若,,,,则

A.

B.

C.

D.

18.(2010新课标)若,是第三象限的角,则

A.

B.

C.2

D.2

二、填空题

19.(2017新课标Ⅰ)已知,,则

=__________.

20.(2017北京)在平面直角坐标系中,角与角均以Ox为始边,它们的终边关于y轴对称.若sin=,则sin=_________.

21.(2017江苏)若,则=

22.(2016年全国Ⅰ卷)已知是第四象限角,且,则

.

23.(2015四川)已知,则的值是________.

24.(2015江苏)已知,,则的值为_______.

25.(2014新课标2)函数的最大值为_______.

26.(2013新课标2)设为第二象限角,若

,则=_____.

27.(2013四川)设,,则的值是____________.

28.(2012江苏)设为锐角,若,则的值为

三、解答题

29.(2018浙江)已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点.

(1)求的值;

(2)若角满足,求的值.

30.(2018江苏)已知为锐角,,.

(1)求的值;

(2)求的值.

31.(2015广东)已知.

(Ⅰ)求的值;

(Ⅱ)求的值.

32.(2014江苏)已知,.

(1)求的值;

(2)求的值.

33.(2014江西)已知函数为奇函数,且,其中.

(1)求的值;

(2)若,求的值.

34.(2013广东)已知函数.

(1)

求的值;

(2)

若,求.

35.(2013北京)已知函数

(1)求的最小正周期及最大值.

(2)若,且,求的值.

36.(2012广东)已知函数,(其中,)的最小正周期为10.

(1)求的值;

(2)设,,,求的值.

专题四

三角函数与解三角形

第九讲

三角函数的概念、诱导公式与三角恒等变换

答案部分

2019年

1.解析

由题意和题图可知,当为优弧的中点时,阴影部分的面积取最大值,如图所示,设圆心为,,.

此时阴影部分面积.故选B.

2.解析

由,得.

因为,所以.

由,得.故选B.

3.解析

由,得,

所以,解得或.

当时,,,

.

当时,,,

所以.

综上,的值是.

2010-2018年

1.B【解析】由题意知,因为,所以,

,得,由题意知,所以.故选B.

2.B【解析】.故选B.

3.C【解析】设点的坐标为,利用三角函数可得,所以,.所以所在的圆弧是,故选C.

4.A【解析】由,两边平方得,所以,选A.

5.D【解析】由得,故选D.

6.D【解析】由,得,或,

,所以,故选D.

7.A【解析】.

8.D【解析】由,且为第四象限角,则,

则,故选D.

9.C【解析】知的终边在第一象限或第三象限,此时与同号,

故,选C.

10.B【解析】由条件得,即,

得,又因为,,

所以,所以.

11.D【解析】=,,上式=.

12.A【解析】因为,

所以,选A.

13.C【解析】由,可得,进一步整理可得,解得或,

于是.

14.D【解析】由可得,

,,答案应选D。

另解:由及可得

而当时,结合选项即可得.答案应选D.

15.B【解析】分子分母同除得:,

16.B【解析】由角的终边在直线上可得,,

17.C【解析】

,而,,

因此,,

则.

18.A【解析】,且是第三象限,,

19.【解析】由得

又,所以

因为,所以

因为.

20.【解析】与关于轴对称,则

所以.

21.【解析】.

22.【解析】因为,所以

,因为为第四象限角,所以,

所以,

所以,

所以.

23.【解析】由已知可得,

=.

24.3【解析】.

25.1【解析】

.,所以的最大值为1.

26.【解析】,可得,

,=.

27.【解析】,则,又,

则,.

28.【解析】因为为锐角,cos(=,sin(=,

sin2(

cos2(,所以sin(.

29.【解析】(1)由角的终边过点得,

所以.

(2)由角的终边过点得,

由得.

由得,

所以或.

30.【解析】(1)因为,,所以.

因为,所以,

因此,.

(2)因为为锐角,所以.

又因为,所以,

因此.

因为,所以,

因此,.

31.【解析】(Ⅰ).

(Ⅱ)

32.【解析】(1),

(2)

33.【解析】(1)因为是奇函数,而为偶函数,所以为奇函数,又得

所以,由,得,即

(2)由(1)得:因为,得又,所以因此

34.【解析】(1)

(2)

所以,

因此

35.【解析】:(1)

所以,最小正周期

当(),即()时,

(2)因为,所以

因为,所以

所以,即

36.【解析】(1).

(2)

第3篇

关键词 高等数学;教材;全导数

中图分类号:G642.0 文献标识码:B 文章编号:1671-489X(2013)12-0098-02

导数概念是微积分学中最重要的概念之一。现行高等数学教材中主要讲述一元函数的导数、多元函数的偏导数、方向导数、复合函数的全导数等概念。全面、系统、准确地理解并掌握导数概念是微积分学中最基本与最重要的教学目的之一。为了在实际教学过程中能够顺利地完成与实现这一教学目的,基于对高等教学多年的教学实践中教与学两方面反映出的问题的总结分析,笔者认为现行高等数学教材中关于“全导数”概念的命名有值得商榷之处。

数学思维的突破点为数学发展历程中的一个重要转折点,也为学生的学习难点,学习者的认知过程会“重演”它的发展经过。因此,就数学教学过程而言,学生就会有一些问题:“全导数”在什么样的情况下提出来的?如何理解“趋近于”?想要弄清楚这些问题,就要认真研究数学的发展历程,站在哲学的视角去认识导数。通过这种方法不仅能够帮助了解导数的概念,还能够帮助构建准确的数学概念。

回想导数概念的发展历程,从中得知导数的内涵要早于极限的内涵,就像积分要早于微分一样。大多数人都知道,于古时候的穷竭法里已有积分内涵的萌芽,然而积分的内涵与方法差不多是和近代力学一起出现并发展起来的,其也经过一段时间的酝酿。

同济大学数学教研室编的《高等数学》(第四版)中关于“全导数”概念的表述为:将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形。定理:如果函数u=j(t)及v=ψ(t)都在点t可导,函数z=?(u,v)在对应点(u,v)具有连续偏导数,则复合函数z=?[j(t),ψ(t)]在点t可导,且其导数可用下列公式计算:

公式中的导数称为“全导数”。用同样方法,可把定理推广到复合函数的中间变量多于两个的情形[1]。目前国内高校选用较多的一些新编高等数学教材中大都沿用这种表述[2]。

对于高等数学教材中导数概念的定义具有很多的争议,很多人认为微积分是将极限理论作为理论前提的,极限运算为微积分运算的一种方法,学生只有掌握好极限,才有可能将导数知识学好;然而也有一部分人认为,极限理论的学习一直为微积分学习中的一个难点。

基于这种定义,明显存在一些问题。

1)与多元函数的偏导数概念相比较,这种“全导数”仅仅是针对多元函数中复合函数求导数的一种特殊情形提出来的。就复合函数而言,复合过程比较复杂,有一元函数与多元函数、多元函数与多元函数,中间变量的个数为两个以上等情形。而上述“全导数”定义中的复合函数只是一个自变量的函数,只不过同一层次的中间变量多于两个,本质上讲这种复合函数仍然是一元函数。仅此原因就引出“全导数”概念,其理由是不充足的。

2)命名中“全”字的汉语意义中,有“全面、全部、全体”等含义,用来表述一种特殊情形下的导数,逻辑上直觉表现为“定义过宽”。这种“全导数”概念与一元函数的导数、多元函数的偏导数、方向导数、全微分概念的逻辑关系难以界定[3]。

3)反映在实际教学过程中,对于学生理解有关导数、偏导数、方向导数、全微分等概念会形成障碍。

①由导数概念的实际背景,知道函数变化率就是导数。基于导数的思想及其内涵,教材中一元函数的导数、多元函数的偏导数、方向导数的定义都是建立在极限理论基础之上,这些概念的一致性是显然的,而所谓“全导数”概念并不具备这种一致性。学生在学习过程中总是自觉不自觉地把这些导数联系起来,教师虽然可以对此做出解释,却陡增节外生枝之感。

②全微分概念是多元微积分学中又一重要概念,教材中重点讨论偏导数与全微分之间的关系。由于所谓“全导数”概念的提出,教学过程中必须对其与全微分概念之间的关系加以解释,以解学生想当然地将全导数与全微分联系之惑,否则对于顺利理解全微分概念势必形成干扰。

通常情况下,不可以用函数?(x)于x1的极限求出?(x1)。如果?(x)在x1连续,然而导函数却不同,即使条件不强也能够这样做。定理:假设函数?(x)于区间[x1,x1+k](k>0)里连续,并且当x>x1时导数为有穷?(x);如果?(x1+0)是存在的,那么导数?(x1+0)=导数?(x)。经过证明发展,其具有两方面的意义。

第一方面的意义:导函数于某点的单侧极限存在,那么此点的同侧导函数一定会存在;如果该左右极限均相同,极限就为此点的导数。这表明导函数的极限能够求解导数值。该种方法在点比较特殊的时候,导数很难求出来,然而采用导函数单侧极限来求解就比较容易。

第二方面的意义:如果某点的导数是存在的,那么导函数于此点的左右极限均在而且相同,这也说明导函数不可能存在跳跃间断点。也可以说,存在跳跃点的函数是不存在原函数的,也就是不可能为哪个函数的导函数。这表明含有跳跃点的函数是不可能求出不定积分的。

综上所述,究其原因是由于“全导数”概念的命名形成的。想要解决这个问题可以采用两种方法:第一种方法是重新命名高等数学教学中导数的概念;另一种方法就是不命名,仍叫其原来的名称。作为教材中复合函数求导法则的内容,如果将导数命名为“复合导数”,不足以表达所有复合函数的导数,似为有些不妥。笔者认为,联系高等数学的教学实际,为了突出并顺利地理解掌握一元函数导数、偏导数、方向导数、全微分等有关概念,本着教材编写中删繁就简的原则,避免小题大做,只将其作为“链式法则”中的一个导数公式即可,不必做“全导数”的命名。

参考文献

[1]同济大学数学教研室.高等数学:下册[M].北京:高等教育出版社,1996:30.

第4篇

【关键词】高等数学;可积;原函数

【中图分类号】O13

引 言

高等数学是所有数学分支的基础,可以当作整个数学的树干.但是,大部分学生觉得此课程枯燥,难以理解,尤其是一些基本概念容易引起混淆.本文就高等数学中函数可积与存在原函数这两个概念进行探讨,希望给学生有益的启示.

一、函数可积与原函数存在没有必然的联系

本节首先给出与函数可积及原函数存在这两个概念相关的三个定理.

定理1 (Ⅰ)若函数y=f(x)在区间[a,b]上连续,则y=f(x)在区间[a,b]上可积;

(Ⅱ)若有界函数y=f(x)在区间[a,b]上仅有有限个间断点,则y=f(x)在[a,b]

上可积;

(Ⅲ)若函数y=f(x)在区间[a,b]上单调,则y=f(x)在区间[a,b]上可积.

定理2 若函数y=f(x)在区间[a,b]上连续,则y=f(x)在区间[a,b]上原函数存在.

定理3 (Ⅰ)若函数y=f(x)在区间[a,b]上含有第一类间断点,则y=f(x)在区间[a,b]上

不存在原函数;

(Ⅱ)若函数y=f(x)在区间[a,b]上有无穷间断点,则y=f(x)在[a,b]

上不存在原函数.

二、通过反例揭示函数可积与存在原函数两者互不蕴含

本节将通过反例揭示函数可积与存在原函数这两个概念互不蕴含.

1.可积不一定存在原函数

2.存在原函数不一定可积

三、小 结

本文通过比较函数可积与存在原函数这两个概念,给出两个经典反例,揭示了二者互不蕴含的关系.希望通过本文的探讨,给学生有益的启示,提升学习高等数学的兴趣.

【参考文献】

[1]同济大学数学系.高等数学(第六版)[M].北京:高等教育出版社,2008.

[2]汪林.数学分析中的问题和反例[M].北京:高等教育出版社,2015.

第5篇

【关键词】高等数学;一致性;连续性;函数

一、高等数学函数一致性连续性的基本概念

高等数学中的一致连续性是从函数连续的基本概念中派生出来的新释义,它是指:存在一个微小变化的界限区间,如果函数定义域以内的任意两点间的距离永远不超过这个界限范围,则这两点相对应的函数值之差就能够达到任意小、无限小,这就是所谓的函数一致连续性概念。一直以来,高等数学函数一致连续的概念都是教学过程中的重点,也是难点之一,在多年的高等数学教学实践过程中,笔者深刻感受到学生在学习和掌握函数一致连续概念时的疑惑和困难。甚至有不少学生会有这样的疑问:函数连续和一致连续的本质区别究竟体现在哪里?

带着上述问题,我们对函数一致连续性进行研究和分析。函数的一致连续性是函数的一个重要的特征和性质,它标志着一个连续函数的变化速度有无“突变”现象,并对其连续性进行归纳总结。函数一致连续性,要求函数在区间上的每一点都保持着连续的特点,不允许出现“突变”现象,同时还进一步要求它在区间上所有点邻近有大体上呈现均匀变化的趋势。换句话说,函数一致连续性的定义为:对于任给定的正数ε,要求存在一个与自变量x无关的正数δ,使对自变量在定义域区间内的任意2个值x'和x",只要二者的距离x'-x"<δ,那么函数所对应的函数值f(x')-f(x")<ε。显然,函数一致连续性的条件要比函数连续的条件强。在目前采用的高等数学的教材中,只是给出一致连续的基本定义,以及利用该定义证明函数f(x)在某区间上一致连续的数学方法,进而呈现出了函数一致连续的完美逻辑结果。这种教学理念是很好的,但是,从实践教学效果上看,又很不利于学生对定义的理解,尤其不利于学生对定义中提到的“δ”的理解,因此笔者建议教学工作者将函数一致连续性概念中所隐含的知识逐步解释清楚,以此来帮助广大学生更快更好地充分理解一致连续的概念和意义。高等数学函数连续性的基本定义为:设f(x)为定义在区间I上的函数,若对ε>0,对于每一点x∈I,都存在相应δ=δ(ε,x)>0,只要x'∈I,且x-x' <δ,就有f(x)-f(x')<ε,则称函数f(x)在区间I上连续。该定义说明了函数f(x)在区间I上连续的基本特征。函数一致连续的基本概念是:设f(x)为定义在区间I上的函数,若对ε>0,存在δ(>0),使得对任何x',x"∈I,只要x'-x"<δ,就有f(x')-f(x")<ε,则称函数f(x)在区间I上一致连续。要特别注意的是,连续概念中δ与一致连续概念中的δ完全不同,一定要充分理解其各自的定义,才能避免混淆概念。为了帮助大家更好地理解函数一致连续性概念,现将函数函数不一致连续的概念进行一下描述:存在某个ε0,无论δ 是怎么样小的正数,在I上总有两点x' 和x",虽然满足x'-x" <0,却有f(x')-f(x")>ε。这就是函数不一致连续的概念,理解和学习函数不一致连续的相关知识,有利于我们更好地学习和研究函数一致连续性问题。

二、高等数学引入一致性连续性的意义和价值

高等数学教材中涉及了较多的理论和概念,比如函数的连续性与一直连续性,以及函数列的收敛性与一致收敛性等,都是初学者很容易混淆的相近概念,因而也成为了高等数学学习中的一个难点问题。在工程数学中,这些概念非常重要,笔者认为,搞清楚和弄明白函数的一致连续的基本概念,以及掌握判断函数是否具有一致连续特性的基本方法,无疑都将是理工科学生学好高等数学函数一致连续性理论知识的核心环节,也是日后成熟运用该数学方法的基础和前提。通过学习和比较,我们能够得出一个很明显的结论:一致连续要比连续条件强。高等数学函数一致连续是一个很重要的概念,在微积分学以及其他工程学科中常常会用到一致连续的知识,而且函数列的一致连续性和一致收敛又有着密切的相互关系。实际上,我们在进行函数列的收敛问题研究时,常常要用到函数列与函数之间的收敛、一致连续性、一致收敛等概念及其关系。函数一致连续的概念是学生学习高等数学的一个难点问题,证明某一个函数是否具有一致连续性是其中的瓶颈问题,这让很多理工科同学感到无从下手。为了解决这一难点,达到化抽象为简单的教学目的,笔者建议给出一致连续性的几种常见等价形式,能够很好地帮助学习高等数学的同学更易于理解和掌握函数一致连续性这一知识要点。高等数学中的函数一致连续性、函数列一致有界性、函数列一致收敛性等“一致性”概念是学习上的难点,也是教学大纲中的重点。因此,牢固掌握这些概念及与之有关的理论知识,对于培养学生良好的数学素养和创新能力都有着重要的意义。

函数一致连续的几何意义非常非常重要。数学分析抽象而且复杂难懂,这门学科本身就有着极强的逻辑思维和严密特征,主要体现在它能够采用最简明的数学语言来准确表述其他语言无法量化的复杂多变的事物发展过程。换言之,其作用在于,能够量化抽象事物的动态发展过程。其几何意义将在高等数学课程入门中起到一个有利引导作用,清晰明朗地向学生展示高等数学中最基本的思想方法和思维方式,帮助学生理解抽象概念,提高学生培养自身的创新思维能力。另外,探讨函数一致连续和一致收敛的关系,同时在有界区间上给出一致连续和一致收敛的等价关系,有利于学生在今后研究连续、收敛问题中拥有更多的参考依据。

三、解决高等数学函数一致性连续性问题的对策

1.一元函数在有限区间上的一致连续性

由于用函数一致连续的定义判定函数 是否一致连续,往往比较困难。于是,产生了一些以G.康托定理为基础的较简单的判别法。

定理1 若函数 在 上连续,则 在 上一致连续。

这个定理的证明方法很多,在华东师大版数学分析上册中,运用了有限覆盖定理和致密性定理来分别证明,本文选用闭区间套定理来证明。

分析:由函数一致连续的实质知,要证 在 上一致连续,即是要证对 ,可以分区间 成有限多个小区间,使得 在每一小区间上任意两点的函数值之差都小于 。

证明:若上述事实不成立,则至少存在一个 ,使得区间 不能按上述要求分成有限多个小区间。将 二等分为 、 则二者之中至少有一个不能按上述要求分为有限多个小区间,记为 ;再将 二等分为 、 依同样的方法取定其一,记为 ;......如此继续下去,就得到一个闭区间套 ,n=1,2,…,由闭区间套定理知,存在唯一一点c满足

(2-13)

且属于所有这些闭区间,所以 ,从而 在点 连续,于是 ,当时,就有

。(2-14)

又由(2-13)式,于是我们可取充分大的k,使 ,从而对于 上任意点 ,都有 。因此,对于 上的任意两点 ,由(2-14)都有 。(2-15)

这表明 能按要求那样分为有限多个小区间,这和区间 的取法矛盾,从而得证。定理1对开区间不成立。阻碍由区间连续性转变为区间一致连续性有两种情况:(1)对于有限开区间,这时端点可能成为破坏一致连续性的点;(2)对于无限区间,这时函数在无穷远处也可能破坏一致连续性。

定理2函数 在 内一致连续在 连续,且 与 都存在。

证明:若 在 内一致连续,则对 ,当 时,有

,(2-16)

于是当 时,有

。(2-17)

根据柯西收敛准则,极限 存在,同理可证极限 也存在,从而 在 连续, 与 都存在。

若 在 连续,且 和 都存在,则

令(2-18)

于是有 在闭区间 上连续,由Contor定理, 在 上一致连续,从而 在 内一致连续。

根据定理2容易得以下推论:

推论1 函数 在 内一致连续在 连续且 存在。

推论2 函数 在 内一致连续在 连续且 存在。

当 是无限区间时,条件是充分不必要的。

2.一元函数在无限区间上的一致连续性

定理3 在 内一致连续的充分条件是 在 内连续,且 都存在。

证明:(1)先证 在 上一致连续。

令 ,由柯西收敛准则有对 使对 ,有

。 (2-19)

现将 分为两个重叠区间 和 ,因为 在 上一致连续,从而对上述 ,使 ,且 时,有

。 (2-20)

对上述 ,取 ,则 ,且 ,都有

。 (2-21)

所以函数 在 内一致连续。

(2)同理可证函数 在 内一致连续。

由(1)、(2)可得 在 内一致连续。

若将 分为 和 ,则当 与 分别在两个区间时,即使有 ,却不能马上得出 的结论。

由定理3还容易得出以下推论:

推论3 函数 在 内一致连续的充分条件是 在 内连续,且 存在。

推论4 函数 在 内一致连续的充分条件是 在 内连续,且 与 都存在。

推论5 函数 在 内一致连续的充分条件是 在 内连续,且 存在。

推论6 函数 在 内一致连续的充分条件是 在 内连续,且 与 都存在。

参考文献:

[1]王大荣,艾素梅;分段函数在分段点处的求导方法刍议[J];沧州师范专科学校学报;2005年03期

[2]袁文俊;邓小成;戚建明;;极限的求导剥离法则[J];广州大学学报(自然科学版);2006年03期

第6篇

关键词:函数的极限 高职数学 教学

极限概念是微积分学最基本的概念之一,连续、导数、定积分等的定义都建立在极限概念的基础上。极限的思想和方法贯穿在整个高等数学的始终,是人们研究许多问题的工具,是从学习初等数学顺利过渡到学习高等数学所必须牢固掌握的内容。正确理解和掌握极限的概念和极限的思想方法是学好高等数学的关键,也是教学中的重点和难点。对高职学生来说,这一部分内容也是较难掌握的。若极限学得不扎实,必然会影响到整个高等数学的学习,因此准确地掌握极限概念,对于进一步研究函数导数、积分等具有非常重要的意义。笔者在高职数学函数和极限一章教学实践中做了如下思考和探索。

一、做好与初等数学的衔接

初等数学研究对象基本上是不变量,而高等数学的微积分以函数、变量为主要研究对象。初等函数是连接初等数学与高等数学的纽带,现行的高中数学课本采用新课程标准,函数的有些内容被删去了,如反函数、三角函数中的余切、正割、余割及反三角函数。这些知识在高等数学中是必要的,因此在教学中笔者加入了这些知识的讲授。

大多数高职学生对中学数学知识掌握并不牢固,所以笔者在教学中重视复习函数概念、基本初等函数及其性质,及时复习求函数极限中用到的数学公式、方法,如根式的有理化、因式分解、三角恒等变换常用公式等,为后续的极限教学做好铺垫。

二、创设情境引入极限概念

学生由初等数学转入高等数学的学习,学习方法、思维习惯、认知理解上会出现诸多不适应。因此,笔者在引入极限概念时,利用AutoCAD软件绘制正多边形的功能来演示随着圆内(外)接正多边形边数的不断增加,正多边形会越来越接近圆这一动态效果,使学生在具体情境中体会到这种无限的过程,使学生能够深刻地理解极限思想的内涵。让学生体会从“量变”到“质变”,从而真正理解极限这个概念。在教学上,我们用多媒体课件动态展示有关函数的图形,帮助学生理解和观察函数的左右逼近值,从而建立左右极限的概念。通过实践“情境—问题—探究”这一教学方式,学生在学习过程中逐步体会常量与变量、有限与无限、近似与准确、动与静,培养学生的辩证思维能力。学生只有真正掌握了“极限”的动态实质,才能更好地理解和掌握导数和积分的概念。

三、精讲极限概念中的关键词

刻画极限的语言高度概括抽象,复杂又逻辑结构严密。高职学生难以理解和接受。所以高职数学无需讲解极限的定义,采用极限的描述性定义更符合高职学生的实际。在极限的描述性定义中有两个关键词,“无限接近”的含义就是“要多接近就有多接近”,“定义”就是对“要多接近就有多接近”的定量化。笔者在教学中利用多媒体课件展示函数动态图形,分析一些典型变化趋势,通过比较数值的变化及函数图形解释“要多接近就有多接近”,引导学生进一步探讨自变量x“无限接近”x0的各种不同形式,使学生在图形上对“无限接近”这种“动态”变化有一较清晰的认识,从而强化对极限概念的理解。

四、针对学生易犯的错误重点讲解

学生在高中阶段已初步学习过极限概念,但缺乏深入的理解,特别是对“无穷小”和“无穷大”更感难以理解。例如对“无穷大”的概念,很多学生认为它是一个无限大的常数,思想还停留在常量数学阶段,而缺乏运动和变化的思想;相应地,将无限小的数就理解为“无穷小”。这样学生就会出现把“无穷小”和“无穷大”当成一个数进行四则运算,极限的四则运算法则成立的前提是两个函数的极限都存在,部分学生往往忽略这一点而造成错误。学生还经常忽视自变量的变化趋势对函数极限的影响,分段函数在分界点的连续性是教学中的一个难点,学生对为什么要计算左右极限感到不解。分析其原因,问题往往出在对极限概念的理解上,对自变量的变化趋势的理解不够。对此,纠正以上错误对具体求函数极限的习题也会有很大帮助。

五、及时总结求极限的各种方法

学生学习函数极限这一章内容感觉较难的原因还在于极限的求法众多,且灵活性强,不是每一种方法都适用于求任意函数的极限,面对各种题型学生往往束手无策。因此,在教学中我们很有必要对函数极限的各种求法加以归纳总结分类。在本章教学结束时,笔者针对求极限的各种方法集中上一次习题课,详细总结各种求极限的方法,取得了较好的效果。

第7篇

关键词 高等数学 初等数学 教材内容 比对 衔接

中图分类号:G642 文献标识码:A

Comparison between the Content of Higher

Mathematics and Elementary Mathematics

DU Huijuan

(School of Software, East China Normal University, Shanghai 200062)

Abstract Effective convergence of higher mathematics and elementary mathematics teaching materials, is one of the key issues to effectively improve the quality of teaching of higher mathematics courses learning. Content and teaching requirements of the higher mathematics and elementary mathematics textbooks "function and limit", "derivative and differential", and gives some suggestions to solve these problems.

Key words higher mathematics; elementary mathematics; teaching materials; comparison

经过调研了解到,2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。试图从教学内容方面解决高中数学与大学数学的衔接问题。但是,大学数学与高中数学教材内容的衔接上还存在不少问题。这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。高等数学与初等数学教材内容的有效衔接亟待解决。

1 “函数与极限”的衔接

函数,是高中数学的重点内容,高考要求较高,学生掌握也比较牢固。高等数学教材中的这部分内容基本相同,但内涵更丰富,难度也提高了。

(1)函数概念:在原有内容中,增加了几个在高等数学中经常用到的实例,如取整函数、狄利克雷函数、黎曼函数、符号函数等。因此,在学习中,函数概念部分可以简略,重点学习这几个特殊函数即可。

(2)初等函数:反三角函数要求提高,新增加了“双曲函数”和“反双曲函数”等内容。反三角函数的概念在高中已学过,但高中对此内容要求较低,只要求学生会用反三角函数表示“非特殊角”即可。而高等函数中要求较高,此处在学习中应补充有关内容:在复习概念的基础上,要求学生熟悉其图像和性质,以达到灵活应用的目的。新增加的“双曲函数”和“反双曲函数”在高等数学中经常用到,故应特别注意。

(3)函数极限:“数列极限的定义”,高中教材用的是描述性定义,而高等数学重用的是“”定义,此处是学生在高等数学的学习中遇到的第一个比较难理解的概念,因此在教学中应注意加强引导,避免影响函数极限后面内容的学习。新增内容“收敛数列的性质”虽是新增内容,但比较容易理解和掌握,教学正常安排即可。“极限四则运算”处增加了“两个重要极限”,要加强有关内容的学习。

2 “导数与微分” 的衔接

高中新教材中的一元函数微积分的部分内容,是根据高等数学内容学习需要所添加,目的是加强高中数学与高等数学的联系,让中学生初步了解微积分的思想。

(1)导数的定义:高中数学和高等数学教材中,这一内容是相同的,不同的是学习要求。高中数学要求:了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的概念和导数的几何意义;理解导函数的概念。也就是说,尽管极限与导数在高中已经学过,但主要是介绍概念和求法,对概念的深入理解不作要求。到了大学,概念上似懂非懂、不会灵活运用,成了夹生饭。但高等数学要求学生掌握并熟练应用,这是高等数学的一个重要内容,在此处应用举例增加了利用“两个重要极限”解题的例题,在教学中应给与足够的重视。

(2)导数的运算:高中新课标教材要求较低:根据导数的定义会求简单函数的导数;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,会求简单的复合函数导数。重点考察利用导数的几何意义分析问题、解决问题的综合能力。

高等数学教学大纲对这部分内容要求:掌握导数的四则运算法则和复合函数的求导法;掌握初等函数的一、二阶导数的求法,会求分段函数、隐函数、参数方程所确定的函数的一阶、二阶导数;了解高阶导数的概念,会求简单函数的n阶导数;了解微分的概念与四则运算。

建议:高中学过的仅仅是该内容的基础,因此需重新学习已学过的内容,为本节后面更深更难的内容打好基础。

(3)导数的应用:高中新教材中仅是借助几何直观探索并了解函数的单调性与导数的关系,并通过实际的背景和具体应用事例引导学生经历由函数增长到函数减少的过程,使学生了解函数的单调性,极值与导数的关系,要求结合函数图像,知道函数在某点取得极值的必要条件和充分条件,会用导数求不超过三次的多项式函数的最大最小值;体会导数方法在研究函数性质中的一般性和有效性;通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的应用。

高等数学对这部分内容的处理是:先介绍三个微分中值定理、洛必达法则、泰勒公式,然后严格证明函数的单调性和曲线的凹凸性,给出函数的极值、最值的严格定义,及函数在一点取得极值的必要条件和充分条件。在此基础上,讨论求最大最小值的应用问题,以及用导数描绘函数图形的方法步骤。

建议:由以上分析比较可知,高中数学所涉及的一元微分学虽然内容差别不大,但内容体系框架有很大差异,高等数学知识更系统,逻辑更严谨。学习要求上,对于导数的几何意义,导数的四则运算法则及简单函数的一阶导数,利用导数判断函数单调性和求函数极值都是高中数学课程标准中要求的重点,是重点强化训练的知识点。而在高等数学教学中建议一点而过,教学重点应放在用微分中值定理证明函数单调性的判定定理、函数极值点的第一、二充分条件定理以及曲线的凹凸性、拐点等内容上。

以上主要分析比较了高中数学与高等数学的重复知识点。除此之外,二者之间以及高等数学与后继课程之间还存在着知识“断裂带”。

3 高中数学与高等数学知识的“断裂带”

高考对平面解析几何中的极坐标内容不做要求,鉴于此这部分知识在高中大多是不讲的;而在大学教材中,极坐标知识是作为已知知识直接应用的,如在一元函数微分学的应用中求曲率,以及定积分的应用中求平面图形的面积等。建议在相应的地方补充讲解极坐标知识。

初等数学与高等数学除了在教材内容上的衔接外,在学习思想和方法等方面的衔接也都是值得研究的课题。学生刚开始学习高等数学,不能很好地衔接,教师在教学中要注意放慢速度,帮助学生熟悉高等数学教与学的方法,搞好接轨。首先要正确处理新与旧的关系,在备课时,了解中学有关知识的地位与作用及与高等数学知识内在的密切联系,对教材做恰当的处理;上课时教师要经常注意联旧引新,运用类比,使学生在旧知识的基础上获得新知识。

总之,努力探索搞好初等数学和高等数学学习衔接问题,是学好高等数学的关键之一。

参考文献