欢迎来到优发表网,期刊支持:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

重金属污染现状及其治理范文

时间:2024-01-31 14:53:58

序论:在您撰写重金属污染现状及其治理时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

重金属污染现状及其治理

第1篇

>> 重金属废水污染及其治理措施 重金属废水污染及其治理技术研究 浅谈重金属废水污染及其处理方法 重金属废水污染防治技术研究及分类 重金属污染治理修复技术 突发性重金属废水污染事故处理菌剂的开发 浅析含重金属离子的废水治理技术的研究进展 土壤重金属污染及其治理方法研究 土壤重金属污染现状及其治理进展 食品中的重金属污染及其检测技术 重金属污染的治理 浅析土壤重金属污染与修复技术 浅谈重金属“镉”的水污染应急处理技术 土壤重金属污染及其防治 植物修复技术治理土壤重金属污染的机制研究进展及其应用前景 重金属治理方案浅析 浅谈电镀重金属废水治理技术的现状及展望 浅析土壤污染中重金属污染修复技术的选取 水体重金属污染危害及治理技术策略探究 关于对土壤重金属污染及治理技术的探讨 常见问题解答 当前所在位置:l###

[6] 陈程,陈明,环境重金属污染的危害与修复.业务探讨:55.

[7] 吴瀛.含重金属离子废水治理技术的研究进展[J].科技资讯,2010,(24):153.

[8] 于晓莉,刘强.水体重金属污染及其对人体健康影响的研究[J].绿色科技,2011,(10):123-126.

[9]李宁杰.白腐真菌对废水中Pb2+的去除及稳定化机理的研究[D].湖南大学,2015.

[10] 刘爱明,杨柳.大气重金属离子的来源分析和毒性效应[J].环境与健康杂志,2011,28(9):839-842.

[11] 杨晔,陈英旭,孙振世等.重金属胁迫下根际效应的研究进展[J].农业环境保护,2001,20(1):55-58.

[12]陶秀成.环境化学[M].北京:高等教育出版社,1999:109―132.

第2篇

>> 土壤重金属污染及修复的研究现状 重金属污染土壤修复技术的研究现状分析及展望 土壤重金属污染现状及修复技术研究进展 土壤重金属铬污染分析及修复技术 土壤重金属污染及修复技术 农田土壤重金属污染及修复技术分析 论重金属污染土壤修复技术的研究 重金属污染土壤植物修复技术研究 土壤重金属的污染现状及生物修复技术 浅谈我国土壤重金属污染现状及修复技术 解析土壤重金属污染的现状与危害及修复技术 土壤重金属污染特点及修复技术研究 论土壤重金属污染现状与修复 浅谈金属矿山土壤重金属污染现状及修复治理措施 浅谈土壤重金属污染与修复技术 重金属污染土壤修复技术应用 浅析土壤重金属污染与修复技术 重金属污染土壤修复技术探讨 浅析土壤重金属污染及修复措施 土壤重金属污染修复研究进展 常见问题解答 当前所在位置:l,2013-07-12.

[2] 骆永明,腾应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505 - 508.

[3] 魏树和,周启星. 重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志,2004 ,23 (1) :65~72.

[4]Yao Z T, Li J H, Xie H H et al.Review on remediation technologies of soil contaminated by heavy metals Procedia Environmental Sciences.2012;16:722-729.

[5]Aresta M, Dibenedetto A, Fragale C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 2008; 70(6): 1052-1058.

[6]Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,2002;46(1)31-38.

[7]Li G D, Zhang Z W, Jing P, et al. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. [J]Transactions of the Chinese Society of Agricultural Engineering,2009;25(10)231-235.

[8]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.

[9]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013,32(3):409-417.

第3篇

关键词:铜陵市 重金属污染 研究进展

中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03

随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。

铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。

1 铜陵重金属污染研究分布

目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。

1.1 矿区土壤

土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。

杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。

王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。

白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。

1.2 尾矿库

铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。

惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。

王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。

1.3 水及水体沉积物

水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。

徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。

李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。

王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。

叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。

1.4 大气沉降物及城区表土与灰尘

随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。

吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。

殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。

2 重金属污染修复技术与控制措施研究

重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。

重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。

王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。

重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。

为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。

3 结语

对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。

健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。

参考文献

[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.

[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.

[3]铜陵市重金属污染综合防治“十二五”规划[R].

[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.

[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.

[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.

[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.

[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.

[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.

[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.

[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.

[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.

[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.

[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.

[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.

[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.

[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.

[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.

[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.

[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.

[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.

[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.

[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.

第4篇

关键词:土壤;重金属;污染;现状;修复

中图分类号:TE991.3 文献标识码:A

比重大于4或5的金属为重金属,如铁、锰、铜、锌、钴、镍、钛、钼、汞、铅、镉、砷等。铁、锰、铜、锌等重金属是生命活动所需要的微量元素,汞、铅、镉、砷等并非生命活动所必需,而且所有重金属含量超过一定浓度时对人体有毒有害。

重金属污染,指由重金属或其化合物造成的环境污染。土壤重金属来源广泛,包括采矿、冶金、化工、金属加工、废电池处理、电子制革和塑料等工业排放的三废及汽车尾气排放,农药和化肥的施用等。如,镉大米,重金属镉毒性很大,可在人体内积蓄,主要积蓄在肾脏,引起泌尿系统的功能变化。农灌水中含镉0.007mg/L时,即可造成污染。

1 土壤污染现状

土壤是农业最基本的生产资料,是农业发展的基础,是不可再生的自然资源。而污染企业的快速发展,农业中肥料的大量投入,经济效益提高的同时,环境的污染也日趋严重,使得重金属在大气、水体、土壤、生物体中广泛分布,而土壤往往是重金属的储存库和最后的归宿。当环境变化时,底泥中的重金属形态将发生转化并释放造成污染。重金属不能被生物降解,但具有生物累积性,重金属可以通过食物链不断富集,残留在一些初级农产品中,传递进入人体内,对人类健康产生严重危害。

中国目前有耕地1.35亿多hm2,但优质耕地数量不断减少,近期的第二次全国土地调查结果显示,中重度污染耕地超过300万hm2,而每年因土壤污染致粮食减产100亿kg。中国中央农村工作领导小组副组长陈锡文介绍说,今后受重金属污染的耕地将退出食用农产品生产,启动重金属污染耕地修复试点。

2 控制与消除土壤污染源

在“十二五”规划中,把重金属污染的防治列为重要工作,要求到2015年,重点区域铅、汞、铬、镉和类金属砷等重金属污染物的排放,比2007年削减15%,非重点区域的重点重金属污染排放量不超过2007年的水平。

控制土壤污染源,即控制进入土壤中的污染物的数量与速度,通过其自然净化作用而不致引起土壤污染,加强土壤污灌区的监测与管理,合理施用化肥与农药,增加土壤容量与提高土壤净化能力,建立监测系统网络,定期对辖区土壤环境质量进行检查。

3 注重农业资源永续利用

我国土壤重金属污染已经达到相当严重的程度,要充分认识重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解和消逝的特点,从思想上重视了解重金属对人类及环境造成的危害,提高环境保护意识,建立农业可持续发展长效机制,逐步让过度开发的农业资源休养生息,促进生态友好型农业发展,加大生态保护建设力度,是为子孙后代留下生存发展空间的重大战略决策。

4 修复措施

土壤修复即通过科技创新来恢复土壤的农业生产能力和生态环境缓冲调控能力。重金属对土壤的污染具有不可逆转性,土壤一旦发生污染,短时间内很难修复,相比水、大气、固体废弃物等环境污染治理,土壤污染是最难解决的,土壤重金属污染问题日益受到人们的关注。有关专家认为,已受污染土壤没有治理价值,对那些污染严重、生态脆弱、资源环境压力大的耕地,该改种的就改种,该治理的就治理,该退耕的就退耕。目前,土壤修复技术归纳起来有热力学修复技术、热解吸修复技术、焚烧法、土地填埋法、化学淋洗、堆肥法、生物修复等多种,目前研究较多的生物修复法,包括植物修复法和动物修复法。

4.1 植物修复法

植物修复法是利用重金属积累将土壤中的重金属富集于植物体内,然后通过收割植物从土壤清除出去,植物修复法应用比较普遍和简便,成本较低,不改变土壤性质,种植的植物不仅美化环境还可以起到防风固坡,防止土壤流失。但是,其治理效率较低,耗时长、污染程度不能超过修复植物的正常生长范围,只适合中低浓度的污染耕地,而对于高浓度的污染耕地,植物修复法则需要漫长的时间并且效果难料,而且随着植物离开土壤,还会产生二次污染危害。因此,植物修复技术只能作为一种污染治理辅助技术。

4.2 动物修复法

动物修复是通过土壤动物或者投放动物对土壤重金属吸收、降解、转移以去除重金属或抑制其毒性,被认为是一种有效的生态恢复措施。动物修复的机理:生物体内的金属硫蛋白与重金属结合形成低毒或无害的络合物;生物的代谢物富含SH的多肽,能与重金属螯合,从而改变其存在状态;生物体内存在的多种编码金属转运蛋白能提高生物对金属的抗性。

虽然土壤的修复技术很多,但没有一种修复技术可以针对所有污染土壤。相似的污染状况,不同的土壤性质、不同的修复需求,也制约一些修复技术的使用。大多数修复技术对土壤或多或少带来一些副作用。

5 小结

综上所述,由于土壤重金属来源广泛、复杂,增加了对土壤重金属治理和修复难度,严重制约了我国农业生产,要更好地防治土壤重金属污染,还需要广大科研工作者不懈的努力,研发出更好的效率更高的修复技术,要大力宣传加强全民环保意识,把环境污染程度降到最低,形成全社会都来重视土壤污染的良好环保氛围,逐步改善土壤生态环境。目前,研发适用性广、成本低、见效快、环保的土壤重金属污染修复技术是各国土壤重金属生态修复的前沿问题,也是迫切需要解决的问题。

参考文献

[1] 陈海仟,吴光红,张美琴,潘道东.我国水产品重金属污染现状及其生物修复技术分析.农产品质量安全论丛--2008年农产品质量安全国际研讨会论文集.

[2] 农产品中重金属风险评估.农产品质量安全风险评估--原理、方法和应用.

[3] 沈振国,刘有良.超积累重金属植物研究进展[J].植物生理学通报,

1998,34(2).

第5篇

关键词:城市土壤;重金属污染;土壤环境

中图分类号:X53 文献标识码:A

前言

因城市土壤吸收了工业污染源、燃煤污染源及交通污染源等释放的重金属,在一定程度上对人类的健康造成影响,且对地表水及地下水等水生生态系统造成污染,导致水质系统紊乱,所以土壤重金属污染问题在城市土壤研究中占据重要地位。目前,对城市土壤重金属污染采取有效的管理及治理措施是必要的,避免土壤重金属污染导致大气和地下水质量的进一步恶化及循环。

1 我国城市土壤重金属污染危害分析

回顾性分析导致城市土壤出现重金属污染问题,其“罪魁祸首”多是由于人类日常活动造成的,如不同工矿企业生产对土壤重金属的额外输入及农业生产活动影响下的土壤重金属输入、交通运输对土壤重金属污染的影响等。自然成土条件也会对土壤重金属污染造成影响,如风力与水力的自然物理、化学迁移过程等带来的影响,又如成本母质的风化过程对土壤重金属本底含量的改变[1]。目前,我国很多大城市的土壤仍旧面临着铅、贡及镉等主要污染元素的继续污染,例如,北京、上海、重庆、广州等,土壤都受到不同程度的重金属污染。随着工业、城市污染的加剧以及农业使用化学药剂的增加,城市重金属污染程度日益严重,有关研究统计,目前我国受铅、镉、砷及铬等重金属污染的耕地及城市环境面积共约2000万hm2,占总耕面积的20%。随着土壤重金属污染面积的扩大,我国大量植物生长受到影响,植株叶片失绿,出现大小不等的棕色斑块,同时,根部的颜色加深,导致根部发育不良,形成珊瑚状根,阻碍植株生长,甚至死亡。此外,大量研究证实,土壤重金属污染影响农业作物的产量与质量,人类通过食用这些农作物产品会对健康及生命造成一定威胁。例如,体内重金属镉含量的增加会导致人类出现高血压,从而引发心脑血管疾病;基于铅属于土壤污染中毒性极高的重金属,临床验证一经进入人体,将难以排出,从而影响身体健康,其能对人的脑细胞造成危害,尤其是处于孕期中的胎儿,其神经系统受到影响,导致新生儿智力低下;再者,重金属砷具有剧毒,人类长期接触少量的砷,会导致身体慢性中毒,是皮肤癌产生的明确因素。

2 防治措施与发展展望

2.1 综合措施的运用

应对城市土壤重金属污染问题采取必要的措施,现阶段采用物理化学法结合生物修复法的综合措施进行干预。顾名思义,物理化学法即是运用物理、化学的理论知识研究出治理土壤重金属污染的有效方法。基于土壤重金属污染前期,污染具有集中的特点,易采取的方法为电动化学法、物理固化法。通常采用物理化学法治理重金属污染重且面积较小的土壤,过程中能体现物理化学法效果显著且迅速的特点。例如,我国对城市园林土壤重金属污染,采用物理化学法进行干预,减少了园林植株受损的数量。但对于重金属污染面积过大的城市园林不易采用物理化学法,因土壤污染面积过大,致使人力与财力的投入量增加,且易破坏土壤结构,从而降低土壤肥力。利用生物的新陈代谢活动降低土壤重金属的浓度,使土壤的污染环境得到大部分或彻底恢复,这一过程称为生物修复。实践中,生物修复具有效果佳,无二次污染的优点,且能降低投资费用,便于管理,利于操作[2]。随着生物修复在治理污染问题中的技术运用逐渐推进,已纳入土壤污染修复方法中的焦点行列。

2.2 发展趋势

现阶段,基于我国土壤重金属污染治理法中的生物修复法尚处于初级阶段,有待于提升其应用价值。就我国领土拥有丰富的植被资源而言,为尽可能保护植被资源,应尽快从植被中选取出能抵抗超量重金属的植物,并从能抵抗超量重金属的植物种类中选取相对应的突变体,从而构建起能抵抗超量重金属的植物数据库,并依次对数据库中的植物进行生理及生化的研究。在研究中,采用先进信息技术GPS加强城市区域土壤重金属镉、铅、砷及铬等含量的空间变异与分布控制研究。同时,对土壤中复合重金属污染中各元素间的作用与关系进行研究,从而不断优化物理化学法。

有关文献表明,我国城市土壤重金属污染治理在未来将会面向以下几方面发展,其发展趋势具有极大突破点。以我国各个城市土壤重金属污染的数据为依据,建立起综合的城市土壤数据库,以便于全面且彻底的开展城市土壤重金属污染的调查,有关内容包括:重金属的种类、含量、分布地段及其来源;着手于我国各个城市土壤中污染物质的含量研究,分析生物效应以及人类健康风险,从而为治理土壤污染问题奠定基础;土壤重金属污染涉及面较广,除影响生物及人类健康之外,对土壤、水质、空气质量及大自然整个生态系统都造成了不可避免的影响。因此,将这一课题纳入研究中是必要的,未来将面向对土壤重金属污染与地表及地下水、空气可吸入颗粒物含量与其性质存在的关系进行研究[3];不断优化判断重金属污染来源的相关技术;我国区域城市土壤重金属污染研究主要依据的工具是可视化计算机软件(GIS),利用其强大的空间分析功能与空间数据管理功能运用在判断重金属污染源及其分布地段的研究中,同时能对我国区域城市重金属污染的风险评估进行分析。

3 结语

综上所述,对土壤生态系统的结构、功能与水、土、气、生等其他生态系统的友好关系进行维护是污染治理的前提。目前,我国土壤重金属污染治理正处于上升阶段,面向深化研究,势必探讨出更有成效的治理方法,使人们的生活及健康得到保障。

参考文献

[1] 楚纯洁,朱正涛.城市土壤重金属污染研究现状及问题[J].环境研究与监测,2010,05(11):109-110.

[2] 肖锦华.中国城市土壤重金属污染研究进展及治理对策[J].环境科学与管理,2010,04(12):136-137.

第6篇

关键词:土壤污染;重金属;蔬菜基地

收稿日期:2011-05-20

基金项目:国家自然科学基金项目(编号:40963001)资助

作者简介:金联平(1985―),男,安徽颍上人,硕士研究生,主要从事热带海岛地表过程与环境评价的学习与研究。

中图分类号:X852

文献标识码:A

文章编号:1674-9944(2011)06-0001-02

1 引言

重金属是指密度4.0以上的约60种元素或密度在5.0以上的45 种元素。As 和Se是非金属,但是它们的毒性及某些性质与重金属相似,所以将砷和硒列入重金属污染物范围内[1]。重金属污染已成为全世界人们极为关注的焦点之一。随着全球经济化的迅速发展,重金属的污染物通过各种途径进入土壤,造成土壤严重污染。重金属在土壤中的高富集直接影响农作物的产量并使其品质下降[2],并可通过食物链危害人类的健康; 也可导致大气和水环境质量的进一步恶化; 即使重金属富集程度不高,亦可能阻碍土壤中微生物群体的多样性和活力,从而严重影响作为营养循环和持续农业基础的土壤的生物量和肥力[3]。蔬菜基地的健康发展关系着人们的饮食安全和我国蔬菜的正常出口,因此治理蔬菜基地土壤重金属污染具有重要的理论意义和现实意义。

2 蔬菜基地土壤重金属污染物来源

土壤中重金属元素的来源主要有两种方式:自然因素来源,主要受成土母质和成土过程对土壤重金属含量的影响;受人为因素的影响,在各种人为因素中,则主要包括工业、农业和交通等来源引起的土壤重金属污染。

2.1 大气降尘污染

大气中的有害气体主要是由工厂排出的有毒废气,因其成分复杂,迁移扩散污染面大,长期对土壤造成严重污染。工业废气的污染大致分为两类,气体污染,如二氧化硫、氟化物、臭氧、氮氧化物、碳氢化合物等; 气溶胶污染,如工业粉尘、烟尘等固体粒子及烟雾、雾气等液体粒子,它们通过沉降或降水进入土壤,造成污染[4]。公路、铁路两侧农田土壤中的重金属污染主要是以Pb、Zn、Cd、Cr、Co、Cu 的污染为主,它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含Zn 粉尘等,汽油中添加的抗暴剂烷基铅会随着汽车尾气污染公路两侧100m范围内的土壤[5]。

2.2 农药、化肥等农用物资的不合理使用

农药能防治病、虫、草害,如果使用得当,可保证作物的增产,但它是一类危害性很大的土壤污染物,施用不当,会引起土壤污染。施用化肥是农业增产的重要措施,但不合理的使用,也会引起土壤污染[6]。长期大量使用氮肥,会破坏土壤结构,造成土壤板结,生物学性质恶化,影响农作物的产量和质量。

2.3 固体废物对土壤的污染

工业废物和城市垃圾是土壤的固体污染物。例如,各种农用塑料薄膜作为大棚、地膜覆盖物被广泛使用,如果管理、回收不善,大量残膜碎片散落田间,会造成蔬菜基地“白色污染”。还有一些固体废弃物被直接或通过加工作为肥料施入农田,造成土壤重金属污染,如磷钢渣作为磷源施入农田时,土壤中发现有Cr 的累积[7]。

2.4 污水灌溉和污泥施肥

污水中的重金属随着污水灌溉进入农田后以不同的方式被土壤截留固定从而引起污染。污泥中含有大量的有机质和N、P、K等营养元素,但同时也含有大量的重金属,随着大量的污泥进入农田,农田中的重金属的含量在不断增高,导致农作物中的重金属残留过多,如施用污泥和污水是造成蔬菜重金属残留的一个主要原因[8]。

3 蔬菜基地土壤重金属污染的特点

3.1 潜伏性和滞后性

重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用,重金属主要通过对作物的产量和品质的影响来表现其危害。因此,土壤污染具有较长潜伏期。由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约[9]。

3.2 单向性和难治理性

进入土壤中的重金属不能被微生物降解,易积累,所以一旦土壤被重金属污染,很难恢复。某些被重金属污染的土壤可能要100~200年时间才能够恢复,因此土壤的重金属污染一旦发生通常很难治理,而且其治理成本较高、治理周期较长。

3.3 间接性和综合性

土壤重金属对人的危害主要是通过食物链或者渗滤进入地下水体实现的。在生态环境中,往往是多种重金属污染同时发生,形成复合污染,且污染强度显示出放大性[10]。

4 蔬菜基地土壤重金属污染的危害

4.1 直接危害农产品的产量和质量,造成经济损失

土壤重金属污染物直接危害农作物的正常生长和发育,导致产量下降,品质降低[11],造成经济损失。中国每年因重金属污染导致的粮食减产超过1 000万t,被重金属污染的粮食多达1 200万t,合计经济损失至少200亿元[12]。加入WTO之后,农产品的重金属超标问题对我国农业冲击更大。

4.2 威胁生态环境安全与人类的生存健康

土壤一旦被重金属污染后,其危害性远远大于大气和水体的污染。有研究表明,重金属污染能明显影响土壤微生物群落,降低土壤微生物量和活性细菌量,对土壤重金属综合污染指数的相关分析表明,在土壤综合污染较轻的情况下,土壤微生物多样性较高,随着重金属综合污染指数的增加,微生物多样性呈指数式迅速下降[13]。土壤重金属污染使污染物在植物、蔬菜、水果等食物中Cd、Pb、Cr 、As 等重金属含量超标或接近临界值,从而使重金属通过食物链富集到动物和人体,最终危害人类健康[14]。

5 蔬菜基地土壤重金属污染的治理

由于农田土壤重金属污染的特点,其治理应立足于“防重于治”的基本方针[15],坚持“预防为主、防治结合、综合治理”。对未被污染的土壤采取预防措施,要控制或消除污染源;对已经污染的土壤则要采取积极治理措施,将污染控制在最低限度。目前,大多数治理方法尚处于探索阶段,治理方法各有利弊[16]。

5.1 控制污染源,减少污染的排放

控制污染源,即控制进入农田土壤中的污染物的数量和速度,使其在土体中缓慢地自然降解,而不致迅速而大量地进入农田,超过土壤的承受能力,引起土壤污染[17,18]。严格做好蔬菜基地的规划,做到土壤的合理安全有效利用,按规划的目标实施,防患于未然。合理使用化肥、农药,重视开发高效低毒低残留的化肥、农药。

5.2 修复被重金属污染的蔬菜基地土壤

修复措施主要包括客土、换土和深耕翻土等。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤植物系统产生的毒害,从而使农产品达到食品卫生标准[19]。对土壤重金属污染严重的地段,依靠切断污染源的方法则往往很难恢复,有时要靠深耕客土、淋洗土壤等方法才能解决问题。另外开展植物修复技术的研究及培养抗性微生物等。其他治理技术见效较慢、成本较高、治理周期较长。

参考文献:

[1] 郑喜坤,鲁安怀,高 翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79~84.

[2] 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2001(8):17~19.

[3] 骆永明.金属污染土壤的植物修复[J].土壤,1999(5):261~265.

[4] 张 颂.农田土壤重金属污染及防治措施[J].辽宁化工,2010,39(5):529~534.

[5] 刘万玲.重金属污染及其对植物生长发育的影响[J].安徽农学通报,2006,34(16):4 026~4 027.

[6] 沈景文.化肥农药和污灌对地下水的污染[J].农业环境保护,1992,11( 3):34~37.

[7] 王焕校.污染生态学[M].北京:高等教育出版社,2000:188~213.

[8] 茹淑华,孙世友,王 凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河南农业科学,2006,10(3):88~91.

[9] 李永涛,吴启堂.土壤重金属污染治理措施综述[J]. 热带亚热带土壤科学,1997,6(2):134~139.

[10] 焦丽香,郭加朋.土壤重金属的污染与治理进展研究[J].科技情报开发与经济,2009,19(1):155~156.

[11] 阮俊华,张志剑,陈英旭,等.受污染土壤的农业损失评估法初探[J].农业环境保护,2002,21(2):163~165.

[12] 李其林,骆东奇.重庆市蔬菜基地土壤中重金属含量及污染特征[J].土壤与环境,2000,9(4):270~273.

[13] 肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究[J] . 辽宁大学学报:自然科学版,2004,31(3):279~283.

[14] 胡正义.Cu 污染土壤――水稻系统中Cu 的分布特征[J].环境科学,2000,21(2):62~63.

[15] 高拯民.我国环境保护科学研究现状与展望[J].土壤学报,1989,26(3):262~272.

[16] 郑喜坤,鲁安怀,周建利,等.我国城郊菜地土壤和蔬菜重金属污染研究现状和展望[J].湖北农学院学报,2002,22(5):476~479.

[17] 赵其国.解决我国东南沿海经济快速发展地区资源与环境质量问题刻不容缓[J].土壤,2001,33(3):113~118.

第7篇

【关键词】重金属;水污染;现状;监测进展

1前言

近年来,我国的经济得到了飞速的发展,但相应的,以环境为代价所带来的负面影响也日益突出,尤其是水体污染问题,严重威胁着人们的身体健康。众所周知,水是生命之源,是人类赖以生存的最宝贵的自然资源,但是在人口急剧增长以及现代工业的影响下,我国的水资源呈现了短缺的现象,加上日益严重的水资源污染问题,尤其是极为突出的重金属水污染,由此,加强对于水体的污染成为当前社会发展所面临的重要问题。一般来说,重金属是指原子质量在63.5D200.6,密度大于4或是5g/cm3的金属,其中硒和砷属于非金属结构,但是由于其毒性及其他性质与重金属很像,因此也被称为重金属。当前,重金属污染包括土壤污染、大气污染和水体污染,但是土地污染的区域比较明显,易于控制;虽然大气污染和水体污染都具有较强的扩散性,而大气污染的扩散范围有限,因此也方便控制;由此,水体污染作为重金属污染最严重和最难控制的区域,对环境和人体将会造成极其严重的影响。

2我国重金属水污染的现状

自上个世纪60年代起,国际上就出现了水体重金属污染的问题,并开展了相关的研究。就我国来说,水体重金属污染的研究开始于20世纪80年代,其中比较常见的重金属包括汞、镉、铅、铬以及类金属砷等具有显著毒性的重金属,也包括毒性一般的铜、锡、锌、镍等,由于重金属污染具有隐蔽性、持久性和污染严重等特点,严重破坏着生态的平衡。尤其是近几年,我国的重金属水体污染问题越来越严重,重金属水污染事故频发。就镉污染来说,在2005年,广东北江韶关段发生了严重的镉超标事件;2006年,湘江湖南株洲段的镉污染事故;以及湖南省浏阳市在2009年发生了镉污染事件。[2] 目前,重金属污染物主要是通过工业污水和生活废水未经过适当的处理就向河流中排放所导致的,并随着水体的径流、淤泥的适当以及大气的沉降得到扩散,从而在水体中累积,危害着水中植物和生物的生长。最主要的是,由于重金属不能够微生物所降解,加上巨大的毒性,严重威胁着水生态系统以及人们的饮水安全。据国家环保部门的相关数据显示,在流经我国的131条河流当中,严重污染的就有36条,还有21条被重度污染,38条处于中度污染。除此之外,在2010年,我国的突发环境事件次数为420起,其中因水体污染而引发的突发事件就高达135次,也就是说,平均每隔两三天便会发生一起水体污染事件。面对严峻的水资源短缺问题,水污染成为“世界头号杀手”,由此,加强重金属水污染的治理和监测,刻不容缓。

3当前重金属水污染的监测进展

当重金属污染物进入水生态系统之后,会影响着水中动植物的存在,而且一旦人体引用,便会发生病变,严重危害人类的身体健康。当前,重金属水污染受到了全世界政府的广泛关注,为此而出台了一些监测政策,并不断推进监测技术的发展。

3.1重金属水污染的监测政策

从环境监测的定义来说,其主要目的是为了及时、准确的获得环境监测的全面数据,通过分析环境质量的现状以及变化趋势,准确的预警各种环境问题,并跟踪污染源的变化,从而对污染事件及时做出反应。目前,为了遏制重金属水污染问题的发生,我国出台了《重金属污染综合防治“十二五”规划》(以下称为《规划》),其中表明指出了五大重金属污染重点防治行业,包括冶炼、采矿、铅蓄电池、化学原料及其制、皮革以及其制品,并决定在这5年内加大对于重金属污染防治的投资。与此同时,在《规划》中划出了14 个重金属污染综合防治的重点省区和138个重点防治区域,要求到2015年,重点区域内的重金属污染物排放量要比2007年减少15%,非重点区域内则不能够超过2007年的重金属污染物排放量。由此可见,国家对于重金属污染的防治势在必行。

3.2重金属水污染监测的技术进展

随着市场需求的不断变化,我国的重金属水污染监测技术发生了翻天覆地的变化,并且逐步朝着规范化和产业化发展,不断满足了污染治理的需求,具体表现如下:

3.2.1检测技术的不断进步

当前,面对日益复杂的水环境,在重金属的污染检测中出现了更多简便、科学的方法。比如说,激光诱导击穿光谱法具有较高的灵敏度,因此可以进行多元的检测;新型的电化学传感器通过运用阳极溶出伏安法来减少仪器的检测限,而且还具有便于携带的特点,因此广泛的应用于野外的现场监测中;此外,随着检测技术的不断发展,酶抑制法、生物传感器等诸多重金属检测方法也将在重金属水污染中得到不同的应用。

3.2.2自动化控制技术的成熟

由于重金属的监测比较复杂,而且对于样品和试剂的定量要求比较高,因而对于地表水的重金属分析十分困难。当前,为了更加精细、稳定的进行重金属污染分析,在重金属的检测中应用了自动化控制技术,通过全自动的分析以及精确的计量,不仅能够避免人类接触有毒药剂而带来的伤害,还能够提高计算的精确程度,从而使得分析结果更加的可靠。

3.2.3监测方案的针对性

一般来说,重金属的污染量是非常小的,尤其是在水体当中,容易受到其他微量元素的影响,从而导致监测的数据不准确。此外,即使是同一种重金属污染,也会因不同的水质特性而产生不同的结果,因而在监测过程中要采用有针对性的方案。比如说,为了排除钙、铁、锌、铜对铅、汞等重金属监测的影响,需要在检测过程中进行预处理或是加入相应的掩蔽剂,从而确保监测数据的真实、可靠性。[3]

4结束语

综上所述,我国的重金属水污染事故时常发生,严重影响着附近居民的身体健康,由此必须要加强对于重金属水污染的治理和监测。当前,随着科学技术的发展,我国的重金属水污染监测的技术有了很大的发展,其中检测技术有了很大程度上的进步,自动化控制技术日趋成熟,以及监测方案也更加有针对性,在不断满足重金属水污染治理需求的同时,对于改善重金属水污染方面发挥了不可替代的作用。

【参考文献】

[1]李振.浅谈重金属水污染现状及检测进展[J].可编程控制器与工厂自动化, 2012,9(7):48-50.